
Albanian j. agric. sci. 2018;17 (4): 211-218       Agricultural University of Tirana 

*Corresponding author: Muhammad Abdus Sobahan; E-mail: sobahan_74@yahoo.com 
(Accepted for publication December 12, 2018) 

ISSN: 2218-2020, © Agricultural University of Tirana 

RESEARCH ARTICLE              (Open Access) 

Effect of Exogenous Proline and Glycinebetaine on Antioxidant Enzymes 

Activity in Rice Seedlings under Salt Stress 
MUHAMMAD ABDUS SOBAHAN  

School of Agriculture and Rural Development, Bangladesh Open University, Gazipur-1705, Bangladesh. 

 

Abstract  

Exogenous application of proline and glycinebetaine (betaine) counteracted the adverse effects of salinity. The 

effect of exogenous proline and betaine on the activity of antioxidant enzymes in the leaves of rice plants (Oryza 

sativa L., cv. Nipponbare) was studied under salt stress conditions. Salt stress increased the activities of superoxide 

dismutase (SOD), catalase (CAT), peroxidase (POX), ascorbate peroxidase (APX), glutathione reductase (GR) and 

dehydroascorbate reductase (DHAR). Exogenous application of proline and betaine increased CAT activity and GR 

activity, whereas SOD, APX, POX and DHAR activities decreased under salt stress conditions. It is suggest that 

exogenous proline and betaine mitigate the detrimental effects of salt stress in rice plants via increasing CAT and 

GR activities rather than SOD, APX, POX and DHAR activities. 
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1. Introduction 

Salinity is one of the major abiotic stresses limiting 

plant growth and yield of most crops all over the world 

[33] [5]. Rice is one of the most important crops and 

suitable for saline soil [53].  

Salt stress causes both ionic and osmotic effects in 

plants, leading to membrane disorganization, metabolic 

toxicity, and genesis of reactive oxygen species (ROS), 

which may cause oxidative damage [13]. ROS such as 

singlet oxygen (1O2), superoxide radical (O2
－), 

hydrogen peroxide (H2O2) and hydroxyl radical (.0H) 

which are inevitably generated naturally via a number 

of cell metabolic pathways [21]. ROS have the 

potential to interact with all types of bio-molecules, 

such as DNA, proteins and lipids, leading to radical 

chain processes, membrane leakage [22].  

Plants cope with oxidative stress by using enzymatic 

and non-enzymatic antioxidant systems. The 

enzymatic system includes superoxide dismutase 

(SOD), catalase (CAT), ascorbate peroxidase (APX), 

peroxidase (POX), glutathione reductase (GR), 

dehydroascorbate reductase (DHAR) [21] [2]. They act 

together in scavenging ROS and subsequent protection 

of plant cells from oxidative damage [25] [26]. As a 

major scavenger, SOD catalyzes the dismutation of 

superoxide to hydrogen peroxide and oxygen. 

However, H2O2 is also toxic to the cells and has to be 

further scavenged by CAT or peroxidase, or both, to 

water and oxygen [54] [44]. The first step of the 

ascorbate-glutathione cycle (ASC-GSH), which 

removes H2O2 is catalyzed by APX [3]. In these cycle, 

reduced glutathione (GSH) functions as an electron 

donor for dehydroascorbate reductase (DHAR) to 

regenerate ASC through reduction of dehydroascorbate 

(DHA) via the Halliwell-Asada pathway [37] [4].  

Environmental stresses including salinity can induce a 

significant accumulation of compatible solutes [9]. 

Proline and betaine are regarded as one of the most 

effective compatible solutes, plays an important role in 

plant salt tolerance by osmotic adjustment, protecting 

the enzymes by stabilizing the structure of proteins such 

as RuBisCO, protecting membrane structures, up-

regulate stress protective proteins and by functioning as 

oxygen radical scavengers [41] [34] [24] [35] [30] [39] 

[38]. In addition, exogenous proline and betaine may 

have also contributed to the improvement of plant salt 

tolerance through its role in ion homeostasis and Na+/K+ 

discrimination under salinity conditions [51][50][23]. 

Although exogenous application of proline or betaine 

mitigates detrimental effect of salt stress by increasing 

antioxidant enzymes activity in many plant species 

[40][43], there is little information available on proline 

and betaine-induced modulation of antioxidant enzymes 

in rice plants. The present work was conducted to study 

the effect of exogenous proline and betaine on the 
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antioxidant enzymes activity in rice plants under saline 

conditions.  

2. Materials and Methods 

Plant material and growth: Seeds of rice (Oryza sativa 

L. cv. Nipponbare) were collected from Field Science 

Center, Faculty of Agriculture, Okayama University, 

Japan. Seeds of rice were washed with 10% H2O2 and 

thoroughly rinsed with distilled water. The washed 

seeds were placed on water-soaked filter paper in a Petri 

dish. The Petri dishes were sealed with a strip of 

Parafilm to prevent water vaporizations, and were 

incubated in a growth room (a 12-h-light/30°C and 12-

h-dark/25°C regime and a photon influence rate of 80 

µmol m-2 s-1) for germination. After 7d of incubation, the 

seedlings were transferred from the dish to a floating net 

so that only the roots of the rice plants could be dipped 

in Kimura B solution, supplemented with 2.86 mg/l of 

H3BO3, 1.80 mg/l of MnCl2.4H2O, 0.079 mg/l of 

CuSO4.5H2O, 0.126 mg/l of Na2MoO4.2H2O, and 0.220 

mg/l of ZnSO4.H2O [19], in a Wagner pot (r = 1/5,000). 

The plants were grown in growth room under the same 

conditions as for germination, the nutrient solution was 

changed every other day, and the pH was adjusted to 5.5 

with 1N NaOH or 1N HCl. The rice plants were grown 

for 14d followed by treatment with or without 25 mM 

NaCl in the presence and the absence of 1 mM proline 

or betaine for 12 h. 

Extraction of antioxidant enzymes: Leaf sample (50 mg) 

was frozen in liquid nitrogen immediately after 

harvesting and stored at -80˚C until enzyme assays. Leaf 

sample was homogenized in 3 ml of 50 mM NaH2PO4 

buffer (pH 7.8) including 1 mM of EDTA and 2% (w/v) 

of PVP with a chilled mortar and pestle. The 

homogenate were centrifuged at 11,000 x g for 20 min 

at 4˚C. All spectrophotometric analyses were conducted 

on a Shimadzu (model UV-2400 PC, Japan) 

spectrophotometer. 

Superoxide dismutase: SOD activity was measured by 

using an SOD Assay Kit-WST (Dojindo Molecular 

Technologies, Kumamoto, Japan). For each SOD 

activity measurement, 20 µl of the sample solution was 

placed in the wells for sample and blank 2. Twenty µl of 

distilled water was placed in the wells for blanks 1 and 

3. Two hundred µl of WST working solution was added 

to each well, and 20 µl of dilution buffer was added to 

the wells for blanks 2 and 3. Twenty µl of enzyme 

working solution was added to the wells for sample and 

blank 1 and then mixed thoroughly. The absorbance was 

measured at 450 nm using a microplate reader (model 

680, Nippon Bio-Red, Tokyo) after incubation at 37˚C 

for 20 min. The activity was calculated (inhibition rate 

%) using the following equation: SOD activity 

(inhibition rate %) = {[(A blank 1-A blank 3)-(A 

sample-A blank 2)] / (A blank 1-A blank 3)} x 100. SOD 

activity was expressed as a percentage, where the 

activity of non-stressed plants was 100%. 

Catalase: Catalase (CAT) activity was assayed as 

previously described [8]. The reaction mixture 

contained 50 mM of NaH2PO4 buffer (pH 7), 0.1 mM of 

EDTA, 3% of H2O2 and 0.1 ml of enzyme extract. The 

decrease in H2O2 was measured as a decline in optical 

density at 240 nm for 2 min when the extinction 

coefficient was 39.4 mM-1 cm-1. 

Peroxidase: Peroxidase (POX) activity was determined 

by the procedure previously reported [36]. The reaction 

buffer solution contained 50 mM of NaH2PO4 buffer 

(pH 7), 0.1 mM of EDTA, 0.1 mM of H2O2 and 10 mM 

of guaiacol. The reaction was started by adding sample 

solution to the reaction buffer solution. The activity was 

calculated from the change in absorbance at 470 nm for 

1 min when the extinction coefficient was 26.6 mM-1 

cm-1. 

Ascorbate peroxidase: Ascorbate peroxidase (APX) 

activity was measured as previously reported [36]. The 

reaction buffer solution contained 50 mM of NaH2PO4 

buffer (pH 7), 0.1 mM of EDTA, 0.5 mM of ascorbate 

and 1.2 mM of H2O2. The reaction was started by adding 

sample solution to the reaction buffer solution. The 

activity was calculated from the change in absorbance at 

290 nm for 1 min when the extinction coefficient was 

2.8 mM-1 cm-1. 

Glutathione reductase: Glutathione reductase (GR) was 

measured as previously reported [15]. The reaction 

buffer solution contained 50 mM of Tris-Cl buffer (pH 

7.5), 3 mM of MgCl2, 0.15 mM of NADPH and 0.5 mM 

of GSSG. The reaction was started by adding sample 

solution to the reaction buffer solution. The activity was 

calculated from the change in absorbance at 340 nm for 

2 min when the extinction coefficient was 6.2 mM-1 cm-

1. 

Dehydroascorbate reductase: Dehydroascorbate 

reductase (DHAR) was done according to [36] with 

some modification. The reaction buffer solution 

contained 50 mM of NaH2PO4 buffer (pH 7), 2.5 mM 

of GSH, and 0.1 mM of DHA. The reaction was started 

by adding sample solution to the reaction buffer 
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solution. The activity was calculated from the change 

in absorbance at 265 nm for 2 min when the extinction 

coefficient was 0.18 mM-1 cm-1. 

Determination of protein: Protein contents of the crude 

extract was measured as described by [11] using bovine 

serum albumin as a standard. 

Statistical Analysis: Data were analyzed by ANOVA, 

and mean values were compared by the Tukey test. 

Differences at p < 0.05 were considered significant. 

3. Results and Discussion 

Plant's treatment with osmolytes like proline, betaine 

can remarkably improve their tolerance to stress 

condition [5]. In our previous investigation, we found 

that application of exogenous proline and betaine 

mitigate the detrimental effects of salt stress on rice 

plants by reducing H2O2 and oxidation of membrane 

lipid [49]. A lower lipid peroxidation resulting from 

elevated activities of antioxidants under salt stress was 

reported on salt-tolerant wild tomato, Lycopersicum 

pennellii [47] and Wild beet, Beta maritime [10]. To 

make it clear the causes of lower lipid peroxidation by 

proline and betaine, it is necessary to investigate the 

antioxidant enzymes. SOD is the major O2
－scavenger 

and its enzymatic action results in H2O2 and O2 [17]. 

Results in this study showed that SOD activity slightly 

increased under salt stress (Fig. 1), a similar increase in 

SOD activity was observed in salt-stressed P. 

maritima, maize and tomato [45] [6] [31]. However, 

application of exogenous proline and betaine decreased 

the SOD activity (6.32% and 12.64%, respectively) 

under salt stress conditions; this result might imply that 

there was lower accumulation of superoxide anion in 

rice plant. Similar to our observation, external supply 

of proline to plants under stress conditions was reported 

to suppress SOD activity in paraquat-induced ice plant 

[48] and salt-induced cucumber plant [29]. These result 

suggest that neither proline nor betaine could enhance 

H2O2 production through scavenge O2
－under salt 

stress.  

 

 
Figure 1: SOD activity in the rice plants treated with 25 mM NaCl in the presence and the absence of 1 mM proline or 

betaine for 12 h. Each value was obtained from more than three experiments. Error bars represent standard deviation. Bars 

with different letters are significantly different at p < 0.05. 

 

Catalase is one of the vital enzymes in scavenging H2O2 

in plant cells exposed to various abiotic stresses due its 

higher turnover rate of reaction [18]. Hydrogen 

peroxide is eliminated by several classes of peroxidases 

[3]. The results of this study show that CAT, POX and 

APX activity increased significantly under salt stress 

conditions (Figs. 2A, B, C). Similar increases in the 

activities of these enzymes have been reported in rice, 

barley and beet cultivars subjected to salt stress [14] 

[52] [46] [10].  Exogenous proline and betaine 

treatment significantly increased CAT activity 

(35.53% and 30.55%, respectively) (Fig. 2A) in 

response to NaCl stress, while POX (12.55% and 

20.50%, respectively) and APX (7.74% and 6.16%, 

respectively) activities decreased (Fig. 2B, C), which 

was in agreement with previous reports [46] [42] [1]. 

This result indicated that catalase is more important 
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than APX and POX to detoxification of H2O2 induced 

by salt stress.  

                                                         
                         

          
 Figure 2: CAT activity (A), POX activity (B) and APX activity (C) in the rice plants treated with 25 mM NaCl in the 

presence and the absence of 1 mM proline or betaine for 12 h. Each value was obtained from more than three experiments. 

Error bars represent standard deviation. Bars with different letters are significantly different at p < 0.05. 

 

 

Glutathione (GSH) has vital roles in development of 

plant stress tolerance to adverse environmental 

conditions [7]. GSH, as a potential scavenger of 1O2, 

H2O2 and OH+, counteracts the inhibitory effects of 

ROS-induced oxidative stress and maintains the 

normal reduced state of cells [32] [12]. GR, the last 

enzyme of ascorbate–glutathione cycle, catalyzes 

NADPH-dependent reduction of oxidized glutathione. 

GR is important in protecting many plants from 

oxidative stress [16]. In the present study, GR and 

DHAR activity were significantly increased in 

Nipponbare rice plants in response to salt stress (Fig. 

3A, B). These results were well agreed with other 

reports [20] [43]. Both proline and betaine increased 

GR activity (31.72% and 30.12%, respectively) 

induced by salt stress (Fig. 3A). However, application 

of exogenous proline and betaine decreased DHAR 

activity (8.21% and 17%, respectively) in salt stressed 

seedlings (Fig. 3B). These results were corroborated 

with other recent findings where exogenous proline and 

betaine up-regulated the GR activity and decreased 

DHAR activity under salt stress [46] [43] [28] which 

could maintain a high GSH pool [27]. It can be 

suggested that exogenously applied proline and betaine 

could help plants to deal with stress conditions via 

scavenge ROS. 
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Figure 3: GR activity (A) and DHAR activity (B) in the rice plants treated with 25 mM NaCl in the presence and the 

absence of 1 mM proline or betaine for 12 h. Each value was obtained from more than three experiments. Error bars represent 

standard deviation. Bars with different letters are significantly different at p < 0.05. 

 

4. Conclusion 

Exogenous proline- and betaine was effective in 

mitigating the detrimental effects of salt stress on rice 

plants by the elevation of CAT and GR activity under 

salt stress. Therefore, application of exogenous proline 

and betaine might be promising approach for salt stress 

management in the era of climatic changes. 
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