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Abstract 

The objective of sampling is to estimate population parameters, such as incidence or prevalence, from 
information contained in a sample. In this paper, the authors describe sources of error in sampling; basic 
probability sampling designs, including simple random sampling, stratified sampling, systematic sampling, and 
cluster sampling; estimating a population size if unknown; and factors influencing sample size determination for 
epidemiological studies in veterinary medicine.  
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1. Introduction 

The objective of sampling is to estimate 
population parameters, such as incidence or 
prevalence, from information contained in a sample 
[6]. That is, to make inferences about a population 
from information contained in a sample selected from 
that population [8]. In most instances, such inferences 
are in the form of an estimate of a population 
parameter, such as a mean, total, or proportion, with a 
bound on the error of estimation. Each observation 
taken from a population contains a certain amount of 
information about the population parameter or 
parameters of interest [5] Therefore, the central 
feature of nearly all sampling designs is determining 
the necessary sample size or quantity of information 
in a sam le pertinent to a population paramete [11]. p r 

If ߠ is the parameter of interest and ߠ෠ is an 
estimator of ߠ, a bound on the error of estimation is 
necessary to specify that ߠ and ߠ෠ differ in absolute 
value by less than some value ܤ (e.g., േ 5%). Stated 
in notational form, the bound on the error of 
estimation is expressed as 

Error of estimati ߠ െ ෠หߠ ൏ on ܤ ൌ ห
with a probability (1 െ  that specifies the (ߙ

fraction of times in repeated sampling that the error 
of estimation is less than ܤ. This condition is 
expressed as 

ܲሾError of estimation ൏ ሿܤ ൌ 1 െ  ߙ
Traditionally, ܤ is set to two standard deviations 

of the estimator, and therefore (1 െ  will be (ߙ
approximately . 95 for standard normal, bell-shaped 
distributions. Sample means and proportions, for 
example, exhibit bell-shaped distributions for 
reasonably large sample sizes, even when the parent 
population is skewed. Once a specified bound on the 
error of estimation with its associated probability 
(1 െ  ,.is specified different sampling designs (i.e (ߙ
methods of selecting a sample) can be compared to 
determine which yields the desired level of precision 
most efficiently.  

The essential nomenclature related to sampling 
includes elements, populations, samples, sampling 
units, and frames, though there are many more. An 
element is an object on which a measurement is 
taken. A population is a collection of elements to 
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which an inference is made from a sample. A sample 
is a collection of sampling units drawn from a frame 
or frames. Sampling units are nonoverlapping 
collections of elements from the population that cover 
the entire population. A frame is a list of sampling 
units. 

2. Sources of Error 

Samples can be afflicted with many types of 
errors. Some arise because only a sample from a 
population is intended for measurement and because, 
even for the sampled elements, data may be 
incomplete or incorrect. These errors can be divided 
into two general categories [11]: errors of 
nonobservation, where the sampled elements make 
up only part of the target population, and errors of 
observation, where recorded data deviate from the 
truth. Errors of nonobservation can be attributed to 
sampling, coverage, or nonresponse. Errors of 
observation can be attributed to the data gatherer, 
respondent, instrument, or, more generally, method of 
data collection. 

3. Errors of Nonobservation 

Generally, the data observed in a sample do not 
precisely reflect the data in the population from 
which that sample was selected, even if the sampling 
and measuring are done with extreme care and 
accuracy. This deviation between and estimate from 
an ideal sample and the true population value is the 
sampling error that is produced simply because this 
is a sample and not a census. Sampling error can be 
measured theoretically and estimated from sample 
data for probability samples. 

In almost all samples, the sampling frame does 
not correspond perfectly with the target population, 
leading to errors of coverage. Coverage errors 
sometime occur because a sampling frame that 
perfectly matches the target population is unavailable. 
Undercoverage occurs when eligible units are 
missing from the sampling frame. Elements that are 
not members of the target population but are 

members of the sampling frame (i.e., ineligible units) 
are referred to as overcoverage. Therefore, coverage 
bias can be described as a function of the proportion 
of the target population not covered by the sampling 
frame and the difference between the covered and 
noncovered population. 

 Coverage error is a property of a frame and a 
target population on a specific statistical estimate. It 
exists before a sample is en. The bias of coverage 
for a mean can b  e  

tak
e xpressed as

െ തܻ ൌ
ܷ
ܰ

തܻ஼ ሺ തܻ஼ െ തܻ௎ሻ 

 where തܻ is the mean of the entire target 
population, തܻ஼ is the mean of the population on the 
sampling frame, തܻ௎ is the mean of the target 
population not on the sampling frame, ܰ is the total 
members of the target population, and ܷ is the total 
number of eligible members not on the sampling 
frame (i.e., not covered elements). 

Perhaps the most serious of all nonobservational 
errors is nonresponse. This is a particularly difficult 
and important problem when information is collected 
directly from people (e.g., through some form of 
interview). Nonresponse arises in one of three ways: 
inability to contact the sampled elements (e.g., 
person, household), inability of the person responding 
to answer the question of interest, or refusal to 
answer. For a mean, nonresponse bias can be 
expressed as 

 
ത௥ݕ െ ത௦ݕ ൌ

݉௦

݊௦
ሺݕത௥ െ  ത௠ሻݕ

 
where, ݕത௥ is the mean of respondents within the 

 ത௦ is the mean of the entire specificݕ ,th sampleݏ
sample selected, ݕത௠ is the mean of nonrespondents 
within the ݏth sample, ݊௦ is the total number of 
sample members in the ݏth sample, and ݉௦ is the 
total number of nonrespondents in the ݏth sample. 

4. Errors of Observation 

Errors of observation can be classified as due to 
the interviewer, the respondent, the measurement 
instrument, or the method of data collection. 
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Interviewers can have a direct and dramatic effect on 
responses to questions. Reading a question with 
inappropriate emphasis or intonation can force a 
response in one direction or another. Respondents 
differ greatly in motivation to answer questions 
correctly and in ability to do so. Each respondent 
must understand the entire question and be clear 
about the options for the answer. Inaccurate 
responses are often caused by errors of definition in 
questions; that is, characteristics of the measurement 
instrument. In any measurement question, the unit of 
measurement must be clearly defined, whether it be 
units on a tape measure or number of glasses of 
water. A method of data collection, such as direct 
observations of certain variables on crops in sections 
of fields in order to produce estimates of crop yields 
or self-administered questionnaires (e.g., where bias 
can be introduced when those who respond differ 
from the target population), among many others, can 
introduce a variety of errors (errors of recording in 
interviews, poorly trained interviewers who deviate 
from a prescribed protocol). 

5. Basic Probability Sampling Designs 

The classical formulation of a statistical 
estimation problem requires that randomness be built 
into the sampling design so that properties of 
estimators can be assessed probabilistically. Here, 
and throughout, the type of sampling discussed is 
sampling without replacement. In sampling without 
replacement, a particular element can appear only 
once in a given sample. Moreover, many important 
features of sampling designs and methods, such as 
distinctions between finite and infinite populations, 
for example, are beyond the scope of this paper. 

6. Simple Random Sampling 

A simple random sample is a sample of ݊ 
elements from a population of ܰ in which each of the 
ቀܰ

݊ቁ possible samples of ݊ elements has the same 

probability of selection, namely ଵ

ቀே
௡ቁ

. In simple 

random sampling, the probability of any element 

being selected is equal to ௡
ே

, the ratio of the sample 

size to the population size. 
The number of observations needed to estimate a 

population mean, ߤ, with a bound on the error of 
estimation of magnitude ܤ is found by setting two 
standard deviations (i.e., approximately a 95% 
confidence interval) of the estimator, ݕത, equal to ܤ 
and solving this exp hat is, ression for ݊. T

2ඥܸ തሻሺݕ ൌ  ܤ
mated variance of ݕത

෠ܸሺݕതሻ ൌ
ଶݏ

with the esti  given by 

݊
൬

ܰ െ ݊
ܰ

൰ 

Also, 

ܸሺݕതሻ ൌ
ଶߪ

݊
൬

ܰ െ ݊
ܰ

൰ 

The required sample size can be found by 
solving for ݊ 

2ඥܸሺݕതሻ ൌ 2ඨߪଶ

݊
൬

ܰ െ ݊
ܰ

൰ ൌ  ܤ

where 

݊ ൌ
ଶߪܰ

ሺܰ െ 1ሻܦ ൅  ଶߪ

If ܰ is large, as it usually is, ሺܰ െ 1ሻ can be 
replaced with ܰ in the denominator. In the equation  

ܦ ൌ
ଶܤ

4
 

Solving for ݊ often presents a problem because 
the population variance, ߪଶ, is unknown. Because a 
sample variance, ݏଶ, is often available from prior 
studies, an approximate sample size can be by 
replacing ߪଶ with ݏଶ or estimating a value of ߪଶ 
when little prior information is available. Because the 
range is often approximately equal to four standard 
deviations, one-fourth of the range will provide an 
approximation of ߪଶ. If one were interested in the 
average weekly milk production for dairy livestock in 
liters, ߤ, for in a community of small farms, and 
although no prior data are available to estimate the 
population variance, it is known that most weekly 
production lies with 00  range, therefore the 
estimated valu

in a 1  liter
e of ߪ would be 

ߪ ൎ
Range

4 ൌ
100

4
ൌ 25 

and 
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ଶߪ 625 ൌ ሺ25ሻଶ ൌ
If there were ܰ ൌ 1,000 small farms in the 

community and the desir bound on the error of 
estimation were  l

ed 
ܤ  ൌ 3 iters, then 

ܦ ൌ
ଶܤ

4
ൌ

ሺ3ሻଶ

4
ൌ 2.25 

and 

݊ ൌ
ଶߪܰ

ሺܰ െ 1ሻܦ ൅ ଶߪ ൌ
1,000ሺ625ሻ

999ሺ2.25ሻ ൅ 625
ൌ 217.56 

 
Therefore, approximately ݊ ൌ 218 observations 

would be needed to estimate ߤ, the average monthly 
milk production in liters for small farms, with a 
bound on the error of estimation of ܤ ൌ 3 liters. 

 In a like manner, the number of observations 
necessary to estimate a population total, ߬, with a 
bound on the error of estimation of magnitude ܤ can 
be found by setting two standard deviations of the 
estimator equal to ܤ and solving for ݊, where 

 
2ඥܸሺܰݕതሻ ൌ  ܤ

 
where 

݊ ൌ
ଶߪܰ

ሺܰ െ 1 ܦ ൅ ଶሻߪ  

with 

ܦ ൌ
ଶܤ

4ܰଶ 

If, for example, one were interested in estimating 
the total weight gain in 0 to 4 weeks for ܰ ൌ 1,000 
chicks fed on a new ration with a bound on the error 
of estimation equal to 1,000 grams and previous 
studies found a population variance, ߪଶ, 
approximat  t 36 m n ely equal o .00 ሺgra sሻଶ, the

ܦ ൌ
ଶܤ

ଶ4ܰ
ൌ

ሺ1,000ሻଶ

4ሺ1,000 ଶሻ ൌ 0.25 

and 

݊ ൌ
ଶߪܰ

ሺܰ െ 1ሻܦ ൅ ଶߪ ൌ
1,000ሺ36.00ሻ

999ሺ0.25ሻ ൅ 36.00
ൌ 125.98 

Therefore, approximately ݊ ൌ 126 chicks would 
need to be weighed to estimate ߬, the total weight 
gain for ܰ ൌ 1,000 chicks in 0 to 4 weeks, with a 
bound on the error of estimation equal to 1,000 
grams. 

 Determining the sample size necessary for 
estimating a population proportion, ݌, to within ܤ 
units is analogous to determining a sample size 
necessary for estimating ߤ with a bound on the error 
of estimation ܤ, given that ݌ can be regarded as the 
average (ߤ) of 0 and 1 ues for a population. 
Therefore,  

val

݊ ൌ
ଶߪܰ

ሺܰ െ 1ሻܦ ൅  ଶߪ

and  
 

ܦ ൌ
ଶܤ

4
 

 
The corresponding sample size needed to 

estimate ݌ can be found by replacing ߪଶ with the 
quantity ݍ݌, where 

 

݊ ൌ
ݍ݌ܰ

ሺܰ െ 1ሻܦ ൅ ݍ݌
 

 
with 
 

ݍ ൌ 1 െ  ݌
 
However, ݌ is typically unknown. An 

approximate sample size can be found by replacing ݌ 
with an estimated value. If no prior information is 
available, ݌ ൌ 0.50 is used to obtain a conservative 
sample size (one that is likely larger than required). 
Assuming that no prior information was available to 
estimate ݌, and one were interested in determining 
the proportion of Holstein cattle from a population of 
ܰ ൌ 2,000 that have Johne’s disease, with a bound 
on the error of estimation of magnitude ܤ ൌ 0.05, the 
necessary samp  be le size would

ܦ ൌ
ଶܤ

4

 

ൌ
ሺ0.05ሻଶ

4
ൌ 0.000625 

 
with 
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݊ ൌ
ݍ݌ܰ

ሺܰ െ 1ሻܦ ൅ ݍ݌

ൌ
ሺ2,000ሻሺ0.5ሻሺ0.5ሻ

ሺ1,999ሻሺ0.000625ሻ ൅ ሺ0.5ሻሺ0.5ሻ

ൌ
500

1.499
ൌ 333.56 

 
Therefore, a sample size of ݊ ൌ 334 Holstein 

cattle would be needed to estimate the proportion 
having Johne’s disease with bound on the error of 
estimation of ܤ ൌ 0.05.  

7. Stratified Random Sampling 

A stratified random sample is one obtained by 
separating the population elements into discrete, 
nonoverlapping groups, called strata, and then 
selecting a simple random sample from each stratum. 
The principle reasons for using stratified random 
sampling rather than simple random sampling are: 

Stratification may produce a smaller bound on 
the error of estimation than would be produced by a 
simple random sample of the same size. This is 
particularly true if measurements within strata are 
homogenous. 

The cost per observation may be reduced by 
stratification of the population elements into 
convenient groupings. 

Estimate of population parameters may be 
desired for subgroups of the population. These 
subgroups should then be identifiable strata. 

In stratified random sampling 
 

ൌ ܮ  Number of strata 

௜ܰ ൌ Number of sampling units in stratum ݅ 
ܰ ൌ Numbe  population r of sampling units in the

ൌ ଵܰ ൅ ଶܰ ൅ ଷܰ ൅ ڮ ൅ ௅ܰ 
 
In stratified random sampling, the number of 

observations needed to estimate a population mean, 
 ݐݏ ത௦௧, where theݕ where the estimator is denoted ,ߤ
subscript indicates that stratified random sampling 
was used, of population total, ߬, with a bound on the 
error of estimation of magnitude ܤ, is 

 

݊ ൌ
∑ ଵܰ

ଶߪ௜
ଶ/ܽ௜

௅
௜ୀଵ

ܰଶܦ ൅ ∑ ௜ܰߪ௜
ଶ௅

௜ୀଵ
 

 
 Where ܽ௜ is the fraction of observations 

allocated to stratum ݅, ߪ௜
ଶ is the population variance 

for stratum ݅. Approximations of the population 
variances ߪଵ

ଶ, ߪଶ
ଶ, . . . ߪ௅

ଶ can be obtained by using 
sample variances ݏଵ

ଶ, ݏଶ
ଶ, . . . ݏ௅

ଶ from previous 
estimates. When estimating ߤ (݌ (or 

ܦ ൌ
ଶܤ

4

 

 

 
and 

2ඥܸሺݕത௦௧ሻ ൌ  ܤ
 
When estimating ߬ 
 

ܦ ൌ
ଶܤ

4ܰଶ 

 
and 
 

2ඥܸሺܰݕത௦௧ሻ ൌ  ܤ
 
A scientist intends to investigate the average 

time spent monthly milking livestock, ݕത௦௧, in small-
sized farms (݊ଵ), medium-sized farms (݊ଶ), and 
large-sized farms (݊ଷ), with an error of estimation of 
ൌ ܤ  2 hours and equal allocation fractions given by 
ܽଵ ൌ ଵ

ଷ
, ܽଶ ൌ ଵ

ଷ
, and ܽଶ ൌ ଵ

ଷ
. The population of small-

sized farms is ଵܰ ൌ 155, medium-sized farms is 

ଵܰ ൌ 62, and large-sized farms is ଵܰ ൌ 93. A prior 
study indicates that the stratum variances are 
approximately ߪଵ

ଶ ൎ ଶߪ ,25
ଶ ൎ 225, and ߪଷ

ଶ ൎ 100. A 
bound on the error of estimation of 2 hours means  

 
2ඥܸሺݕത௦௧ሻ ൌ 2 

 
and, therefore, ܦ ൌ 1. Given the population of 

small-sized farms is ଵܰ ൌ 155, medium-sized farms 
is ଵܰ ൌ 62, and large-sized farms is ଵܰ ൌ 93, then 
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෍ ௜ ௜
ܽ௜

ܰଶߪଶ
ൌ ଵ ଵ

ܽଵ

ܰଶߪଶ
൅ ଶ

ܽଶ

ܰଶߪଶ
ଶ

൅
ܰଶߪଶ

ଷ ଷ
ܽଷ

ଷ

௜ୀଵ

 

ൌ
ሺ155ሻଶሺ25ሻ

ቀ1
3ቁ

൅
ሺ62ሻଶሺ225ሻ

ቀ1
3ቁ

൅
ሺ93ሻଶሺ100ሻ

ቀ1
3ቁ

 

ൌ ሺ24,025ሻሺ75ሻ ൅ 3 ሻ ൅ ሺ8,649ሻሺ300ሻ ሺ ,844ሻሺ675
ൌ 6,991,275 

 
where 
 

෍ ௜ܰߪ ൌ ଵܰߪଵ ൅ ଶܰߪଶ ൅ ଷܰߪଷ
௜ୀଵ

 

ൌ ሺ155ሻሺ2 ൌ 27,125 

௜
ଶ ଶ ଶ ଶ

ଷ

5ሻ ൅ ሺ62ሻሺ225ሻ ൅ ሺ93ሻሺ100ሻ
ܰଶܦ ൌ ሺ310ሻଶሺ1ሻ ൌ 96,100 

 
Then, 
 

݊ ൌ
∑ ଵܰ

ଶߪ௜
ଶ/ܽ௜

௅
௜ୀଵ

ܰଶܦ ൅ ∑ ௜ܰߪ௜
ଶ௅

௜ୀଵ
ൌ

6,991,275
96,100 ൅ 27,125

ൌ
6,991,275
123,225

ൌ 56.7 

 
Therefore, ݊ ൌ  57 with 
 

݊ ൌ ݊ሺܽ ሻ ൌ 57 ൬
1
3ଵ ଵ ൰ ൌ 19 

ଶ ଶ݊ ൌ ݊ሺܽ ሻ ൌ 57 ൬
1
3

൰ ൌ 19 

݊ଷ ൌ ݊ሺܽଷሻ ൌ 57 ൬
1
3

൰ ൌ 19 

 
To calculate the sample size necessary to 

estimate the total time spent milking per month, ߬, 
with a bound on the error of estimation of ܤ ൌ  400 
hours, the same procedure would be used except that 

  

ܦ ൌ
ଶܤ

4ܰଶ 

 
and 
 

2ඥܸሺܰݕത௦௧ሻ ൌ  ܤ
 
would be substituted for  
 

ܦ ൌ
ଶܤ

4
 

 
and 

2ඥܸሺݕത௦௧ሻ ൌ  ܤ
 
yielding ݊ ൎ 105, with ݊ଵ ൌ ݊ଶ ൌ ݊ଷ ൌ 35. 

8. Systematic Sampling 

A systematic sample is a sample in which 
elements are randomly selected from the first ݇ 
elements in a frame and every ݇th element is 
thereafter called a 1-in-݇ systematic sample with a 
random start. Systematic sampling is a useful 
alternative to simple random sampling for the 
following reasons: 

Systematic sampling is easier to perform in the 
field and hence is less subject to selection errors by 
field-workers than are either simple random samples 
or stratified random samples, especially if a good 
frame is not available. 

Systematic sampling can provide greater 
information per unit cost than simple random 
sampling can provide for certain populations with 
certain patterns in the arrangement of elements. 

In general, systematic random involves random 
selection of one element from the first ݇ elements and 
then selecting every ݇th element thereafter. For a 
systematic sample of ݊ elements from a population of 
size ܰ, ݇ must be less than or equal to ே

௡
 (i.e., ݇ ൑ ே

௡
). 

To determine the number of observations 
necessary to estimate ߤ to within ܤ units, the required 
sample size is found by solving for ݊ where 

 

2ටܸ൫ݕത௦௬൯ ൌ  ܤ

 
Where the ݕݏ subscript indicates that the 

sampling design is systematic. The solution involves 
both ߪଶ and ߩ, which must be known (at least 
approximately) in order to solve for ݊. Although 
these parameters can sometimes be estimated, this 
method is not discussed here as it exceeds the scope 
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of this paper. Instead, the formula for ݊ is the same as 
for simple random sampling. This formula could give 
an extra-large sample for ordered populations and too 
small a sample for periodic populations. If the 
population is random, the variances of ݕത௦௧ and ݕത are 
equivalent and the necessary sample size is estimated 
as 

 

݊ ൌ
ଶߪܰ

ሺܰ െ 1ሻܦ ൅  ଶߪ

 
where 
 

ܦ ൌ
ଶܤ

4
 

 

9. Cluster Sampling 

Cluster sampling is a less costly alternative to 
simple or stratified random sampling if the cost of 
obtaining a frame that lists all population elements is 
very high or if the cost of obtaining observations 
increases as the distance separating elements 
increases. Cluster sampling is an effective design for 
obtaining a specified amount of information under the 
following conditions: 

A good frame listing all population elements is 
not available or is very costly to obtain, but a frame 
listing clusters is easily obtained. 

The cost of obtaining observations increases as 
the distances separating the elements increases. 

Clusters typically consist of herds, households, 
or other units of clustering (e.g., an orange tree forms 
a cluster of oranges for investigating insect 
infestations). A farm herd contains a cluster of 
livestock for estimating proportions of diseased 
animals. Elements within a cluster are often 
physically close together and hence tend to have 
similar characteristics and the measurement on one 
element within a cluster may be correlated with the 
measurement on another. In cluster sampling 

 
ܰ ൌ  Number of clusters in a population 

݊
ൌ u a  sample N mber of clusters selected in a simple r ndom

݉௜ ൌ 1, … ܰ Number of elements in cluster ݅, ݅ ൌ

ൌ
1
݊

ഥ݉ ෍ ݉௜ ൌ Average cluster size
௡

 
௜ୀଵ

ܯ ൌ ෍ ൌ Number of elements in population
ே

 ݉௜
௜ୀଵ

ഥܯ ൌ
ܯ
ܰ

ൌ Average cluster size for populatio

௜ݕ ൌ Total of all observations in ݅th cluster 

n 

 
The quantity of information contained in a 

cluster sample is affected by the number of clusters 
and the relative cluster size. Assuming that the cluster 
size (sampling unit) is known or has been selected, 
the number of clusters for estimating population 
means and totals, ݊, to be selected can be estimated 
from 

 
෠ܸ ሺݕതሻ ൌ ൬

ܰ െ ݊
ഥଶ൰ܯ݊ܰ ௥ݏ

ଶ 

 
where 
 

௥ݏ
ଶ ൌ

∑ ሺݕ௜ െ ത݉௜ሻଶ௡ݕ
௜ୀଵ

݊ െ 1
 

 
with the variance ݕത of approximated as 
 

෠ܸ ሺݕതሻ ൌ ൬
ܰ െ ݊
ഥଶ൰ܯ݊ܰ ሺߪ௥

ଶሻ 

 
where the population quantity ߪ௥

ଶ is 
approximated by ݏ௥

ଶ, and assuming that estimates of 
௥ߪ

ଶ and ܯഥ  are available, with 
 

2ඥܸሺݕതሻ ൌ  ܤ
 
and 
 

ܦ ൌ
ଶܯଶܤ

4
 

Where 

݊ ൌ
௥ߪܰ

ଶ

ܦܰ ൅ ௥ߪ
ଶ 
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Table 1 Number of Residents and Per-

Capita Income 

Cluster 
Number of 

Residents (݉௜) 

Total Annual 
Income per Cluster 

 (௜ݕ)

1 8 $96,000 
2 12 $121,000 
3 4 $42,000 
4 5 $65,000 
5 6 $52,000 
6 6 $40,000 
7 7 $75,000 
8 5 $65,000 
9 8 $45,000 

10 3 $50,000 
11 2 $85,000 
12 6 $43,000 
13 5 $54,000 
14 10 $49,000 
15 9 $53,000 
16 3 $50,000 
17 6 $32,000 
18 5 $22,000 
19 5 $45,000 
20 4 $37,000 
21 6 $51,000 
22 8 $30,000 
23 7 $39,000 
24 3 $47,000 
25 8 $41,000 

 ෍ ݉௜ ൌ 151
ଶହ

௜ୀଵ

 ෍ ௜ݕ ൌ $1,329,000
ଶହ

௜ୀଵ

 

 
Supposing that the data in Table 1 represent a 

preliminary sample of agricultural incomes in a 
region (in United States dollars) and a researcher was 
interested in estimating the average per-capita annual 
agricultural income, ߤ, with a bound on the error of 
estimation of ܤ ൌ $500, where ܰ ൌ 415, the 
estimate of ݏ௥

ଶ is 
    

௥ݏ
ଶ ൌ

∑ ሺݕ௜ െ ത݉௜ሻଶ௡ݕ
௜ୀଵ

െ 1݊
ൌ ሺ25,189ሻଶ 

 
The quantity ܯഥ  can be estimated by ഥ݉ ൌ 6.04 

from T b  1, a  a le nd ܦ is
 

ܦ ൌ
ଶܯଶܤ

4
ൌ

ሺ500ሻଶሺ6.04ሻଶ

4
ൌ ሺ62,5000ሻሺ6.04ሻଶ 

 

where 
 

݊ ൌ
௥ߪܰ

ଶ

ܦܰ ൅ ௥ߪ
ଶ ൌ

415ሺ25,189ሻଶ

415ሺ6.04ሻଶሺ62,500ሻ ൅ ሺ25,189ሻଶ

ൌ 166.58 
 
 Therefore, ݊ ൌ  167 clusters should be 

sampled for a bound on the error of estimation of 
ൌ ܤ  $500 from ܰ ൌ  415 clusters. 

 In a like manner, the number of observations 
necessary to estimate a population total, ߬, with a 
bound on the error of estimation of magnitude ܤ can 
be found by  

 

݊ ൌ
௥ߪܰ

ଶ

ܦܰ ൅ ௥ߪ
ଶ 

 
with 
 

ܦ ൌ
ଶܤ

4ܰଶ 

 
Again, using Table 1 as a preliminary sample, a 

researcher intends to determine how large a sample is 
necessary to estimate the total annual per-capita 
income of all regional residents, ߬, with a bound on 
the error of estimation of ܤ ൌ  $1,000,000 where 
there are ܯ ൌ . The estimate of ݏ௥

ଶ is  2,500 residents

௥ݏ
ଶ ൌ

∑ ሺݕ௜ െ ത݉௜ሻଶ௡ݕ
௜ୀଵ

݊ െ 1

 

ൌ ሺ25,189ሻଶ 

 
with 
 

ܦ ൌ
ܤ

4ܰଶ

ଶ
ൌ

ሺ1
ሺ415ሻଶ

,000,000ሻଶ

4
 

ܦܰ ൌ
ሺ1,000,000ሻଶ

4ሺ415ሻ ൌ 602,409,000 

 
where 
 

݊ ൌ
௥ߪܰ

ଶ

ܦܰ ൅ ௥ߪ
ଶ ൌ

415ሺ25,189ሻଶ

602,409,000 ൅ ሺ25,189ሻଶ

ൌ 212.88 
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Which gives ݊ ൌ  213 clusters to be sampled to 
estimate total annual per-capita income with a bound 
on the error of estimation of ܤ ൌ  $1,000,000. 

 For a population proportion, ݌, estimated as 
 using cluster sampling, the proportion of elements ,̂݌
in cluster ݅ that possesses the characteristic of interest 
is given by ܽ௜, which replaces ݕ௜ when estimating ߤ 
or ߬,   

 

̂݌ ൌ
∑ ܽ௜

௡
௜ୀଵ

∑ ݉௜
௡
௜ୀଵ

 

 
where ݉௜ is the number of elements in the ݅th 

cluster, with variance 
 

෠ܸ ሺ̂݌ሻ ൌ ൬
ܰ െ ݊
ഥଶ൰ܯ݊ܰ ௣ݏ

ଶ 

 
where 
 

௣ݏ
ଶ ൌ

∑ ሺܽ௜ െ ௜ሻଶ௡݉̂݌
௜ୀଵ

݊ െ 1
 

 
 When an estimation of the population 

proportion, ݌, with a bound on the error of estimation 
of ܤ units is desired 

 
2ඥܸሺ̂݌ሻ ൌ  ܤ

 
where 
 

݊ ൌ
௣ߪܰ

ଶ

ܦܰ ൅ ௣ߪ
ଶ 

 
with 
 

ܦ ൌ
ഥଶܯଶܤ

4
 

 
 To estimate the necessary sample size for a 

population proportion, ݌, using cluster sampling from 
ܰ ൌ  415, with ߪ௣

ଶ estimated as ݏ௣
ଶ ൌ ഥܯ ,0.527  

estimated as ഥ݉ ൌ 6.04, with a bound of error where 
ൌ ܤ  0.04, for example, ܦ is 

 
ഥଶܯଶܤ

4
ൌ

ሺ0.04ሻଶሺ6.04ሻଶ

4
ൌ 0.0146 

 
where 
 

݊ ൌ
௣ߪܰ

ଶ

ܦܰ ൅ ௣ߪ
ଶ ൌ

ሺ415ሻሺ0.527ሻ
ሺ415ሻሺ0.0146ሻ ൅ 0.527

ൌ 33.20 

 
Therefore, ݊ ൌ  34 clusters should be sampled 

from ܰ ൌ  415 to obtain a bound on the error of 
estimation of ܤ ൌ  0.04 for a population proportion, 
 .݌

10.  Estimating an Unknown Population Size 

Frequently, the population size is not known and 
is important to the goals of a study. Samples can be 
afflicted with many types of errors. The study of the 
growth, evolution, and maintenance of wildlife 
populations crucially depends on accurate estimates 
of population sizes. Several methods are available, 
including direct sampling, inverse sampling, density 
and size from quadrant samples, density and size 
from stocked quadrants, and adaptive sampling. Due 
to space limitations, only direct and inverse sampling 
is discussed here. For presentations of other methods 
see Scheaffer, Mendenhall III, & Ott (2006). 

11.  Estimation of a Population Using Direct 
Sampling 

Direct sampling can be used to estimate the size 
of a mobile population. First, a random sample of size 
 .is drawn from the population, tagged, and released ݐ
At a later date, a second sample of size ݊ is drawn. 
Using these data, often called recapture data, the 
population size, ܰ, can be estimated. Letting ݏ be the 
number of tagged wildlife in the second sample, the 
proportion of tagged wildlife s  i

̂݌ ൌ
ݏ
݊

 
 

 
An estimate of ܰ is given by 
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෡ܰ ൌ
ݐ
̂݌

ൌ
ݐ݊
ݏ

 

 
with variance 
 

෠ܸ ൫ ෡ܰ൯ ൌ
ଶ݊ሺ݊ݐ െ ሻݏ

ଷݏ  

  
Before posting a schedule for an upcoming 

hunting season, the game commission for a particular 
country wishes to estimate the size of the deer 
population. A random sample of ݐ ൌ  300 deer are 
captured, tagged, and released. A second sample of 
݊ ൌ  200 deer is taken two weeks later. If 62 tagged 
deer are recaptured in the second sample, ݏ ൌ  62, ܰ 
can be estimated by 

෡ܰ ൌ
200ሺ300ሻ

62

 

ൌ 967.74 

 
with a bound on the error of estimation of 
 

2ට ෠ܸቀ ෡ܰഥቁ ൌ 2ඨݐଶ݊ሺ݊ െ ሻݏ
ଷݏ ൌ 2ඨ

ሺ300ሻଶሺ200ሻሺ138ሻ
ሺ62ሻଷ

ൌ 204.18 
 
Thus, the game commission estimates that the 

total number of deer is ܰ ൌ  968 with a bound on the 
error of estimation of ܤ ൌ  205. 

12.  Estimation of a Population Using Inverse 
Sampling 

Inverse sampling is similar to direct sampling, 
except the second sample size is not fixed. That is, 
sampling continues until a fixed number of tagged 
animals are observed. An initial sample of ݐ animals 
is drawn, tagged, and released. Later, random 
sampling is conducted until exactly ݏ tagged animals 
are recaptured. If the sample contains ݊ animals, the 
proportion of tagged animals in the sample is given 
by  

 
̂݌ ൌ

ݏ
݊ 

 
And N is estimated by 
 

෡ܰ ൌ
ݐ
̂݌ ൌ

ݐ݊
ݏ

 

 
with variance 
 

෠ܸ ൫ ෡ܰ൯ ൌ
ଶ݊ሺ݊ݐ െ ሻݏ
ݏଶሺݏ ൅ 1ሻ  

 
Authorities of a large wildlife preserve are 

interested in the total number of birds of a particular 
species that inhabit the preserve. A random sample of 
ൌ ݐ  150 birds is trapped, tagged, and then released. 
In the same month, a second sample is drawn until 
ൌ ݏ  35 birds are recaptured. In total, ݊ ൌ  100 birds 
are recaptured in order to locate ݏ ൌ  35 tagged ones. 
The population, ܰ, is estimated by 

෡ܰ ൌ
100ሺ150ሻ

35

 

ൌ 428.57 

 
with a bound on the error of estimation of 
 

2ට ෠ܸቀ ෡ܰഥቁ ൌ 2ඨ
ଶ݊ሺ݊ݐ െ ሻݏ
ݏଶሺݏ ൅ 1ሻ ൌ 2ඨ

ሺ150ሻଶሺ100ሻሺ62ሻ
ሺ35ሻଶሺ36ሻ

ൌ 115.17 
 
Therefore, the population of birds is estimated as 

ܰ ൌ  429 with a bound on the error of estimation of 
ൌ ܤ  116. 

13.  Some Factors Influencing Sample Size 
Determination 

13.1 Type I and Type II Errors 

In a scientific method one of the primary tasks is 
identifying and defining a research question. Without 
questions, science would cease to exist. Therefore, it 
is of utmost importance that scientists identify, 
define, and explicitly state the problem under 
investigation, including the particular question or 
questions of interest related to that problem and the 
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specific strategy employed for resolving, partially 
resolving, or simply studying the problem. What are 
the questions to be investigated? How will those 
questions be answered? These, and many others, are 
the essential concerns that should be identified at the 
outset of any social inquiry. What is more, the 
process of identifying and defining research 
questions, in conjunction with gathering information 
and resources (e.g., existing knowledge about the 
phenomenon being investigated), typically serves as a 
guide to formulating one or more specific research 
hypotheses. 

For the majority of scientists formulating 
hypotheses is the sine qua non (i.e., something that is 
essential or necessary) of all inquiry. In essence, a 
research hypothesis is a deductive guess that states 
the expected outcome of a study. When formulating 
hypotheses, the researcher deduces, through a 
literature review process, experience, or observation, 
an anticipated result. Research hypotheses can be 
expressed in numerous ways, but typically are 
formulated first as a null or nil (literally meaning zero 
difference or zero relationship) hypothesis, then as 
either an alternative non-directional hypothesis (two-
tailed, two-sided) or an alternative directional 
hypothesis (one-tailed, one-sided). Alternative, non-
directional hypotheses imply that a difference is 
anticipated, but does not express the direction of that 
difference. Directional hypotheses, however, state the 
expected direction of an expected difference. Each of 
these types of hypotheses are presented and defined 
in Table 2.  

Table  2 Common Types of Hypotheses 

Type of Hypothesis Definition 
Null or nil 
hypothesis 

States that no difference is 
expected 

Non-directional 
hypothesis 

States that a difference is expected 
but does not state the direction of 
the expected difference 

Directional 
hypothesis 

States that a difference is expected 
and the direction of the expected 
difference 

 
In general, most social scientists are interested in 

one of the alternative hypotheses, whether directional 

or non-directional, not the null or nil hypothesis 
(though the null or nil nearly always serves as the 
basis for the majority of statistical tests). 

Null or nil hypotheses are implicit in nearly all 
forms of research, whether explicitly stated or not. 
And, nearly all statistical tests are tests of the null or 
nil hypotheses rather than tests of the alternative 
hypothesis. Such hypotheses can be expressed in 
numerous ways, and the methods for doing so vary 
by disciplinary traditions, norms, and standards. 
Some biostatisticians, for example, refer to these 
types of tests or hypotheses as tests of equivalence 
(e.g., Is a new vaccine equally effective as an old 
vaccine?) or superiority (e.g., Is a 500 mg dose more 
effective than a 250 mg dose of a new drug or higher 
dose of vaccine?). If an epidemiologist, for instance, 
were interested in determining whether the average 
adult body temperature of Alpine goats managed in 
Albania is actually 38.9° Celsius, the epidemiologist 
might express the research question (i.e., What is the 
average adult body temperature of Alpine goats in 
Albania?) in the form of a null and alternative 
hypothesis. In notational form, where ܪ଴ is the null 
hypothesis, ܪA is the alternative hypothesis (where ܣ 
represents alternative), sometimes written ܪଵ, and ߤ 
is the population mean, this hypothesis would be 
represented as: 

 
ൌ ߤ :଴ܪ  38.9° 

് ߤ :஺ܪ  38.9° 
 
Using the same hypothesis, the epidemiologist 

might formulate a directional alternative hypothesis 
rather than a hypothesis simply suggesting that the 
population mean, ߤ, does not equal 38.9° Celsius, 
such as the average adult body temperature of Alpine 
goats in Albania is less than 38.9° Celsius. This 
directional hypothe usis wo ld be expressed as: 

ൌ ߤ :଴ܪ  38.9° 

൏ ߤ :Aܪ  38.9° 
 
Two concepts are important considerations for 

understanding the practice of null hypothesis 
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significance testing: Type I and Type II errors. A 
Type I error is the conditional prior probability of 
rejecting ܪ଴ when it is true, where this probability is 
typically expressed as alpha (ߙ). Alpha is a prior 
probability because it is specified before data are 
collected, and it is a conditional prior probability, ݌, 
because ܪ଴ is assumed to be true. This conditional 
prior probability is usually expressed as 

 
ߙ ൌ  ଴ trueሻܪ|଴ܪ ሺReject݌

 
where | means assuming or given. Both ݌ and ߙ 

are derived from the same sampling distribution and 
are interpreted as long-run, relative-frequency 
probabilities. Unlike ߙ, however, ݌ is not the 
conditional prior probability of a Type I error (often 
referred to as a false-positive) because it is estimated 
for a particular sample result. Conventional levels of 
 .are either .05 or .01 in most of the sciences [2] ߙ
Alpha sets the risk of a Type I error rate, akin to a 
false-positive because the evidence is incorrectly 
taken to support the hypothesis, for a single 
hypothesis only (sometimes referred to as a primary 
or focal outcome). When multiple statistical tests are 
conducted, there is also a familywise probability of 
Type I error (sometimes referred to as multiplicity), 
which is the likelihood of making one or more Type I 
errors across a set of statistical tests. If each test is 
conducted at the same level of ߙ, then 

 
FWEߙ ൌ 1 െ ሺ1 െ ሻ௖ߙ  

 
where ܿ is the number of tests performed, each 

at a specified ߙ level. In this equation, the term 
ሺ1 –  ሻ is the probability of not making a Type Iߙ 
error for any individual test, ሺ1 –  ሻ௖ is theߙ 
probability of making no Type I errors across all 
tests, and the whole expression represents the 
probability of making at least one Type I error among 
all tests. So, for example, if 10 statistical tests were 
performed, each at ߙ ൌ  .05, the familywise Type I 
error rate would be  

 

FWEߙ ൌ 1 െ ሺ1 െ ሻଵ଴ߙ ൌ .40 
 
Thus, the Type I error rate across all 10 

statistical tests would be 40%. This result indicates 
the probability of committing one or more Type I 
errors, but does not indicate how many errors have 
been committed or which specific statistical test, or 
tests, the error occurred in. 

There are two basic ways to control familywise 
Type I error. Either reduce the number of tests (or 
only test the primary or focal outcome) or lower ߙ to 
a tolerable rate for each test. The former reduces the 
total number of tests to those with the greatest 
substantive meaning, whereas the latter can be 
determined by a number of methods, including the 
Bonferroni correction. The Bonferroni correction 
simply requires dividing the target value of ߙFWE by 
the number of tests, and setting the corrected level of 
statistical significance at ߙ஻ where  

஻ߙ ൌ
αFWE

ܿ

 
 

 
If 10 statistical tests were conducted and the 

tolerable Type I error rate was 5%, then ߙ஻  = .05/10 = 
.005 for each individual test. 

Although formal tests of statistical significance 
largely originated from the works of Fisher (1925) 
and Neyman and Pearson (1933), statistical power, 
and the concept of Type II error, however, is largely 
derived from the work of Cohen [1, 2, 3]. Power is 
the conditional prior probability of making the correct 
decision to reject ܪ  when it is actually false, where ଴

Power ൌ  ଴ falseሻܪ|଴ܪ ሺReject݌

 

 
A Type II error (often referred to as a false-

negative) occurs when the sample result leads to the 
failure to reject ܪ଴ when it is actually false. The 
probability of a Type II error is usually represented 
by ߚ, and it is also a conditional prior probability 
where 
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ߚ ൌ  ଴ falseሻܪ|଴ܪ ሺFail to reject݌

 
Because power and ߚ are complimentary 
 

Power ൅ ߚ  ൌ 1.00 

 
Therefore, whatever increases power decreases 

the probability of a Type II error and vice versa. 
Several factors affect statistical power, including ߙ 
levels, sample size, score reliability, design elements 
(e.g., within-subject designs, covariates), and the 
magnitude of an effect, among many others [3, 9]. By 
lowering ߙ, for example, statistical power is lost, thus 
reducing the likelihood of a Type I error, which 
simultaneously increases the probability of a Type II 
error. Conversely, increasing sample size generally 
increases power. The relationship between Type I and 
Type II decision errors arising from statistical 
hypothesis testing is summarized in Table 3. 

Table 3: Accept-Reject Dichotomy and 

Decisions for Hypotheses 

 Ho True Ho falce 
Fail to Reject Correct decision 

1- α 
Type II error 
β 

Fail to Accept Type I error - 
α 

Correct decision 
1- β 

Table 4: Diagnostic Decisions Relative to a 

Test Result and True Status 

 
  Test Result 

(T) 
Positive (+) 

Negative (-) 

True  
Status (S) 

Disease (+) 
No Disease (-) 

a 

c 

b 

d 

 
Null and nil hypothesis significance testing, in 

most disciplines, has been widely misused and 
misinterpreted (e.g., a p-value is the probability that a 
result is due to sampling error, a ݌-value is the 
probability that a decision is wrong). The correct 
interpretation of ݌-values, for ݌ ൏  .05, essentially 
includes only the following (Kline, 2004): 

The odds are less than 1 in 20 of getting a result 
from a random sample even more extreme than the 
observed sample when ܪ଴ is true. 

Less than 5% of test statistics are further away 
from the mean of the sampling distribution under ܪ଴ 
than the one for the observed result. 

Assuming ܪ଴ is true and the study is repeated 
many times, less than 5% of these results will be even 
more inconsistent with ܪ଴ than the observed result. 

13.2 Sensitivity and Specificity 

The concepts of sensitivity and specificity have 
their origins in diagnostic tests for diseases or other 
conditions. When a single test is performed, an 
animal may in fact have the focal disease or the 
animal may be disease free. The test result may be 
positive, indicating the presence of disease (ܶା), or 
the test result may be negative (ܶି), indicating the 
absence of the disease as shown in Table 4. 

Sensitivity is the conditional probability that a 
test correctly identifies the presence of a disease or 
condition when the subject has the disease or 
condition and is expressed as 

 
ሺܶା|ܵାሻ݌ ൌ

ܽ
ܽ ൅ ܾ

 

Specificity is the conditional probability of a test 
giving a negative result when the subject does not 
have a disease or condition and is expressed as 

 

ሺܶି|ܵିሻ݌ ൌ
݀

ܿ ൅ ݀
 

A diagnostic test should have both high 
sensitivity and specificity otherwise the probability of 
false positive and false negative diagnoses are 
substantially increased. In the context of sensitivity 
and specificity, a false positive occurs when the test 
result is positive for a subject that is free of a disease 
or condition. The false positive rate for a diagnostic 
test is 

 
ሺܵି|ܶାሻ݌ ൌ

ܿ
ܽ ൅ ܿ
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Table 5 Mastitis Diagnoses in a Sample of 100,000 Jersey Cattle 

  Test Result (T) 
Positive (+) 

Negative (-) Total 

True 
Status (S) 

Disease (+) 
No Disease (-) 

Total 

475 
4.975 
5.450 

25 
94.525 
94.550 

99.500 
00.000 

500 

1
 

Ideally, the value of ܿ would be 0. However, this 
is generally impossible in a diagnostic test involving 
a large population. A false negative occurs when the 
test result if negative for a subject that has the disease 
or condition and is 

 

ሺܵା|ܶିሻ݌ ൌ
ܾ

ܾ ൅ ݀
 

  
In a sample of ݊ ൌ  100,000 Jersey cattle 

screened for mastitis (see Table 5), for example, 
where the prevalence rate was low, the sensitivity of 
the test was ସ଻ହ

ହ଴଴
ൌ 0.95 and specificity was ଽସ,ହଶହ

ଽଽ,ହ଴଴
ൌ

0.95.  
Although sensitivity and specificity of the test 

was high, in large populations where the incidence 
rate is low the false positive rate increases 
significantly, and this increase is not strictly a 
function of sensitivity and specificity but also of the 
incidence rate in the population. In this case, the 
false-positive rate was ସ,ଽ଻ହ

ହ,ସହ଴
ൌ 0.91, whereas the 

false-negative rate was ଶହ
ଽସ,ହହ଴

ൌ 0.0003. Therefore, 

indiscriminately applying a diagnostic test to a large 
population where the prevalence rate of a disease or 
condition is very low can be problematic as 
sensitivity and specificity are related to correct 
decisions corresponding to Type I and Type II errors. 

 The basic methodology to account for 
sensitivity and specificity of a diagnostic device 
involves taking a sample of size ݊ from a population 
of ܰ and applying the diagnostic procedure to each of 
the sampled elements. If ݇ of the sampled elements 
are screened as positive, then the maximum 
likelihood estimate ߨො  of the unknown prevalence ߨ is 
given by 

 

ොߨ ൌ
̂݌ ൅ ܵ௣ െ 1
ܵ௘ ൅ ܵ௣ െ 1

 

 
where ݌ ൌ ௞

௡
ൌ the proportion having positive 

diagnoses, ܵ௘ = the sensitivity of the test, and ܵ௣ = 

the specificity of the test. The standard error of the 
estimated prevalence is given by 

SE
SEሺ̂݌ሻ

൫ܵ௘ ܵ௣ െ 1൯

 

ሺߨොሻ ൌ
൅

 

where the SEሺ̂݌ሻ of ̂݌ would depend on the 
particular sample design and estimation procedure 
used. From a random sample of ݊ ൌ  150 Alpine 
goats taken from a population of ܰ ൌ  2,560 to 
estimate the prevalence rate of ketosis, using a 
diagnostic method with sensitivity of 96% and 
specificity of 89%, 23 were diagnosed positive. 
Assuming a simple random sample 

 

̂݌ ൌ
23

150 ൌ 0.153 

 
and 
 

S෢
ܰ െ ݊

Eሺ̂݌ሻ ൌ ൬
݊

൰ ቆ
݊ െ 1

ଵ/ଶ ሺ1̂݌ െ ሻ̂݌
ቇ  

ൌ ൬
2,560 െ 150

2,560

ଵ/ଶ

൰ ൬
ଵ/ଶ 0.153 ൈ 0.847

149
൰

ଵ/ଶ

 

ൌ 0.029 
 
where 
 

ොߨ ൌ
1.53 ൅ 0.89 െ 1
0.96 ൅ 0.89 െ 1 ൌ

0.043
0.85

ൌ 0.051 

with 
 

SE෢ሺߨොሻ ൌ
0.029
0.85 ൌ 0.034
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Considering diagnostic sensitivity and 
specificity of less than 100%, which produce 
estimates of test prevalence rather than true 
prevalence, the sample size necessary for a given 

bound on the error of estimation, ܤ, using slightly 
different notation and assuming and infinitely large 
population, is given by Thrusfield [12]. 

 

݊ ൌ ൬
1.96

݀
൰

ଶ
ൈ

൛൫ܵ௘ ൈ ௘ܲ௫௣൯ ൅ ൫1 െ ܵ௣൯൫1 െ ௘ܲ௫௣൯ൟ൛൫1 െ ܵ௘ ൈ ௘ܲ௫௣൯ െ ൫1 െ ܵ௣൯൫1 െ ௘ܲ௫௣൯ൟ

൫ܵ௘ ൅ ܵ௣ െ 1൯ଶ  

 
where ݀ represents the desired precision, ܵ௘ 

represents sensitivity, ܵ௣ represents specificity, and 

௘ܲ௫௣ represents an expected prevelance. 

If, for instance, an expected herd or flock 
prevalence of 20% was to be estimated with a desired 

absolute precision of േ 5% (݀ ൌ  0.05), with a 
diagnostic procedure having a sensitivity and 
specificity of 95% (ܵ௘ ൌ 0.95) and 90% (ܵ௣ ൌ 0.95), 

respectively, then 

 

݊ ൌ ൬
1.96
0.05

൰
ଶ

ൈ 
ሼሺ0.95 ൈ 0.20ሻ ൅ ሺ1 െ 0.90ሻሺ1 െ 0.20ሻሽሼሺ1 െ 0.95 ൈ 0.20ሻ െ ሺ1 െ 0.90ሻሺ1 െ 0.20ሻሽ

ሺ0.95 ൅ 0.90 െ 1ሻଶ ൌ 419 

 
Therefore, approximately ݊ ൌ 419 herds or 

flocks would need to be sampled. 

14.  Conclusions 

Probability sampling designs are at the center 
of epidemiological studies. The primary aim of 
sampling is to make inferences from a sample to a 
target population and, therefore, the information 
that arises from samples must be representative of 
the entire population. In this paper basic 
probability sampling designs, including simple 
random sampling, stratified sampling, systematic 
sampling, and cluster sampling, are presented and 
applications for veterinary medicine are 
illustrated.   

Despite the method of sampling, the 
distribution of values in any sample will differ 
from the distribution in sample chosen by chance 
alone. The number of sampled elements sampling 
affect the results of all studies, and larger samples 
are much more likely to reflect the characteristic 
of interest in the target population. Even under 
ideal conditions, sampling is prone of several 

types of errors, including errors of observation 
and nonobservation and errors of estimation. In 
addition, direct and inverse sampling methods 
were presented when population sizes are 
unknown and important factors influencing 
sample size determination, including Type I and 
Type II errors, formulation of hypotheses (e.g., 
directional, nondirectional, superiority, 
equivalence), and sensitivity and specificity of 
diagnostic tests, were presented. Finally, 
systematic application of the equations and 
formulas, under consideration of the focal 
research question or hypothesis, presented in this 
paper can help mitigate sampling errors as well 
be used to determine the most efficient sampling 
method for a particular purpose.  
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