RESEARCH ARTICLE

MULTIVARIANTE ANALYZE USED FOR INTERPRETATION OF ORGANOCHLORINATED POLLUTANT LEVELS IN SOIL SAMPLES OF KOSOVO

VLORA GASHI¹⁾, ARDIAN MACI²⁾, AUREL NURO³⁾, ORINDA GASHI⁴⁾

- 1) Institute of Agriculture and Food, Peja, Kosovo
- 2) Faculty of Agriculture & Environment, Agricultural University of Tirana
- 3) Tirana University, Faculty of Natural Sciences, Chemistry Department, Tirana
- 4) Faculty of Agrobisnessi at University Haxhi Zeka of Peja, Kosovo

ABSTRAKT

Soil contamination is one of most important factors influencing the quality of agricultural products. Usage of heavy farm equipment, the land drainage, an excessive application of agrochemicals, emissions originating from mining, metallurgical, and chemical and coal power plants and transport, all generate a number of undesired substances (nitric and sulphur oxides, PAHs, heavy metals, pesticides), which after deposition in soil may influence crop quality. Thus, input of these contaminants into the environment should be carefully monitored. This paper presents the data obtained for organochlorinated pesticides, their residues, PCB and chlorobenzenes in the soil samples of agricultural areas. Levels of organochlorinated pesticides, PCB and chlorobenzenes contamination were evaluated in agriculture areas that are in use in soil samples. 11 soil samples were taken in agricultural areas, near Peja, Kosovo in March 2014. Representative soil samples were collected from 0-30 cm top layer of the soil. In the analytical method we combined ultrasonic bath extraction and a Florisil column for samples clean-up. The analysis of the organochlorinated pesticides in soil samples was performed by gas chromatography technique using electron capture detector (GC/ECD). Optima-5 (low/mid polarity, 5% phenyl methyl siloxane 60 m x 0.33 mm x 0.25um film) capillary column was used for isolation and determination of organochlorinated pesticides. Interpretation of data were performed using cluster analyze models. Relatively low concentrations of organochlorinated pesticides and their metabolites were found in the studied samples. Two were the main groups, DDTs and HCHs. The presence of organochlorinated pesticides residues is probably resulting of their previous uses for agricultural purposes. PCB 52 was the main congener found in soil samples (the main grup of cluster) and hexachlorobenzene was the main compound for chlorinated benzene compounds.

Keywords: Organochlorinated pesticides, PCB marker, Chlorobenzenes, Soil samples, Gas chromatography, Cluster analyze

1. Introduction

Soil contamination is one of most important factors influencing the quality of agricultural products. Usage of heavy farm equipment, the land drainage, an excessive application of agrochemicals, emissions originating mining, metallurgical, and chemical and coal power plants and transport, all generate a number of undesired substances (nitric and sulphur oxides, PAHs, heavy metals, pesticides), which after deposition in soil may influence crop quality. Thus, input of these contaminants into the environment should be carefully monitored. Levels organochlorinated of pesticides contamination were evaluated in agriculture areas that are in use (Nuro&Marku, 2011). Representative soil samples were collected from 0-30 cm top layer of the soil. This study could be a first step

for monitoring of organic pollutants in agricultural areas of Kosovo.

The concentrations and toxicity of organic compounds present in such complicated mixtures range very widely and depend also on possible interactions (synergies) among chemicals. The development of instrumental analysis techniques and the lowering of the detection limit have made it possible to identify new organic compounds that are present in the soil in very low concentrations. The list of the most commonly studied soil pollutants has been expanded to polychlorinated include biphenyls (PCBs), aliphatic hydrocarbons, polycyclic aromatic hydrocarbons (PAHs), polychlorinated dibenzo dioxins (PCDDs), polychlorinated dibenzo furans (PCDFs) polychlorinated naphtalenes and (PCNs). The continuous introduction of these

*Corresponding author: Vlora Gashi; E-mail:vlora_gashi70@hotmail.com

persistent compounds into the environment has resulted in their accumulation. Runoff is the movement of pesticides in water over a sloping surface. The amount of pesticide runoff depends on: the slope, the texture of the soil, the soil moisture content, rainfall, and the type of pesticide used. Leaching occurs downward, upward, or sideways. Many chromatographic methods were developed last years for detecting all possible and known organic pollutants in soil samples (Di Muccio, 1996; Erikson, 2001). Determination of halogenated pollutants is based mainly in capillary GC/ECD and GC/MS methods. LOD for chlorinated pesticides and PCBs in soil samples is in ppb levels. EPA and EN norms suggested these methods as routine confirmatory analysis for responsible and laboratory.

Different software work with three different procedures that can be used to cluster data: hierarchical cluster analysis, k-means cluster, and two-step cluster. If you have a large data file (even 1,000 cases is large for clustering) or a mixture of continuous and categorical variables, you should use the two-step procedure. If you have a small data set and want to easily examine solutions with increasing numbers of clusters, you may want to use hierarchical clustering. If

you know how many clusters you want and you have a moderately sized data set, you can use kmeans clustering. There are numerous ways in which clusters can be formed. Hierarchical clustering is one of the most straightforward methods. It can be either agglomerative or divisive. Agglomerative hierarchical clustering begins with every case being a cluster unto-itself. At successive steps, similar clusters are merged. The algorithm ends with everybody in one jolly, but useless, cluster. Divisive clustering starts with everybody in one cluster and end up with everyone in individual clusters. Obviously, neither the first step nor the last step is a worthwhile solution with either method. In agglomerative clustering, once a cluster is formed, it cannot be split; it can only be combined with other clusters. Agglomerative hierarchical clustering doesn't let cases separate from clusters that they've joined. There is no right or wrong answer as to how many clusters you need. It depends on what you're going to do with them. To find a good cluster solution, you must look at the characteristics of the clusters at successive steps and decide when you have an interpretable solution or a solution that has a reasonable number of fairly homogeneous clusters (Arabie et al, 1996; Ball, and Hall, 1997).

2. Material and Methods

2.1 Preparing of adsorbents for determination of organochlorinated pesticides and PCBs in soil samples

Silicagel, Florisil and sodium sulphate anhydrous were activated for 12 hours on 250°C on oven. After that Silica gel were treated with 45% with concentrated sulphuric acid and Florisil with 5% with distilled water.

2.2 Preparation of glassware for GC analyze

Preparation of glassware's for determination of organochlorinated pesticides and polychlorinated biphenyls in nano levels is very important for getting real values. All glassware's were treated with sulphuric acid in rate 1:4 in volume for 6 hours. Washing firstly with distilled water and after that with organic solvents (hexane:dichloromethane). All glassware's were

dry in thermostat for 6 hours in 150°C (Beltran et al, 2000; Muir &Sverko, 2006).

2.3 Sampling of soil samples and their pretreatment

Levels of organochlorinated pesticides and PCBs were evaluated in agriculture areas that are in use. 10 soil samples were taken in agricultural areas, near Peja, Kosovo. Representative soil samples were collected from 0-30 cm top layer of the soil. Sampling stations of soil samples was shown in Table 1. Soil samples were air dried. A representative sub-sample of each sample was taken for determination of humidity and another sub-sample for determination of organochlorinated pesticides and PCBs with gas chromatographic analyze.

Table 1. Sampling stations of soil samples analyzed in Institute of Agricultural and Food, Peja, Kosovo

Sample Station	Agricultural area	Deep of soil	Humidity	Dry weight
----------------	-------------------	--------------	----------	------------

			samples	(%)	(g)
T1	Memushe	sere - tranguj	0-30 cm	2.9	13.3
T2	Peje	pemishte -molle	0-30 cm	6.53	13.65
Т3	Memushe	sere - domate	0-30 cm	6.98	15.48
T4	Peje (Qyshk)	sere	0-30 cm	13.15	15.1
Т5	Nepervisht	sere - tranguj	0-30 cm	4.05	13.22
Т6	Nepervisht	sere - domate	0-30 cm	8.32	14.73
T7	Nepervisht	sere - tranguj	0-30 cm	10.7	17.54
Т8	Gjakove	pemishte	0-30 cm	12	12.2
Т9	Peje (Leshan)	sere	0-30 cm	24.85	16.81
T10	Peje (Leshan)	sere	0-30 cm	18.2	14.5

2.4 Soil sample treatment for GC analyze

A fresh sub-sample from 10-20 g of soil samples were extracted by ultrasonic bath assisted extraction with 50 ml hexane/dichloromethane 3/1, (v/v) (Fluka, Germany, pesticide grade). The extract was purified by shaking with 2 gr sodium sulphate and 2g silica gel, impregnated previously with 45% sulfuric acid. A further clean-up of this extract was performed in a open glass column packed with Florisil (particle size 0.063±0.2 µm; Merck, Darmstadt, Germany), deactivated with 5% water. The organochlorine were eluted with 7 ml compounds hexane/dichloromethane 4/1(v/v) (Spectroscopy grade; Fluka, Germany). The extract was concentrated to 1 ml in nitrogen concentrator and after that analyzed by GC-ECD (Beltran et al, 2000; Muir & Sverko, 2006).

2.5 Gas chromatography analyze of soil samples

3. Results and Discussion

10 soil samples of agricultural areas near Peja, Kosovo were chosen for determination of organochlorinated pesticides and PCBs. Extraction, clean-up and concentration procedures were realized in laboratory of Agricultural Institute in Peja, conform protocols for determination of PCBs and organochlorinated pesticides for soil samples.

Data of organochlorinated pollutants in soil samples from Kosova was shown in table 1. Total of organochlorinated pesticides was shown in Figure 1. Maximum level was found for sample T5 and T8 with 0.019 mg/kg soil sample. Minimum level was for T1 sample with 0.0055 mg/kg. Distribution and profile of

Gas chromatographic analyses were performed with a DANI 1000 Gas chromatograph equipped with a 63Ni Electron Capture Detector and a split/splitless injector. The column used was an Optima-5 (low/mid polarity, 5% phenyl methyl siloxane 60 m x 0.33 mm x 0.25μ m film). The split/splitless injector and detector temperatures were set at 300°C and 320°C, respectively. Carrier gas was helium at 2 ml/min and make-up gas was nitrogen at 25 ml/min flow. The initial oven temperature was kept at 110°C for 4 minutes, than increased to 200°C at 20°C/min, and then increased to 280°C at 40C/min. The temperature was finally increased to 320°C, at 10^oC/min, than held for 7 minutes. Injection volume was 1µl and injections were done in splitless mode. Organochlorine pesticide and PCB quantification was performed by external standard method (Nuro&Marku, 2011).

organochlorinated pesticides were shown respectively in Figure 2 and Figure 3. Almost for all studied samples have the same distribution of organochlorinated pesticides. The most dedected pesticides were: 24'-DDT, 44'-DDD, HCB, Isodrine, Heptachlor, alfa-Klordan. Note that for all samples were found in higher levels metabolites and not organochlorinated pesticides. This fact suggests that found concentrations could be because of before use of organochlorinated pesticides in agricultural areas and their degradation. All found pesticides concentrations were lower than Maximal allowed values (MAV) in the soil samples according Administrative Project instruction in Allowing Norms of

Hazardous Substances and Harmful Presence in Soil, Prishtinw, Kosovo, 2011.

Total of PCBs for analyzed soil samples was show in Figure 4. Maximum level was for sample T3 with 0.0025 mg/kg soil sample. In 6 soil samples PCBs were not detected. PCB levels were lower than Maximal allowed values (MAV) in the soil samples according Administrative Project instruction in Allowing Norms of

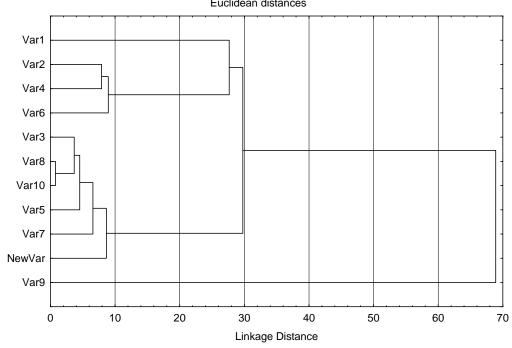

Hazardous Substances and Harmful Presence in Soil, Prishtinw, Kosovo, 2011. Distribution of PCBs was shown in Figure 5 and their profile in Figure 6. PCB 52 and PCB 138 were most detected biphenyls. PCB 52 presence could be because of atmospheric factors. PCB 138 presence could be because of its physic-chemic properties.

Tabela 2.Tëdhënat e pesticideveklororganikenëmostrat e tokës

Pesticidi	M1	M2	M3	M4	M5	M6	M7	M8	M9	M10
Hekzaklorbutadien	0.1	0.01	0.01	0	0.01	0.02	0.01	0	0.01	0.01
Teknazen	0.22	0.09	0.04	0.06	0.14	0.04	0.03	0.05	0.02	0.06
а-НСН	0.96	0.01	0.05	0.02	0.02	0.03	0.02	0.1	0.01	0.02
HCB	6.88	0	0.09	0	0.03	0	0.05	0	0.02	0.04
b-HCH	2.31	0	0.19	0.08	0.71	0.17	0	0	0	0.14
Lindan	0.87	0.19	0.61	0.09	0.05	0.07	0.01	0.22	0.07	0
Kvintozen	0.72	0.12	0.19	0	0	0.02	0	0.32	0.05	0.16
d-HCH	0.76	0.16	0.06	0.11	0.46	0.16	0.24	0.08	0.03	0.07
е-НСН	1.52	0.06	0.06	0	0.28	0	0	0.04	0	0.04
Heptaklor	0.85	0.11	0.03	0.09	0.08	0.1	0.11	0.04	0	0.07
Aldrin	4.73	0.72	0.19	0.06	0.36	0.17	0.09	0.15	0.16	0.13
Izodrin	0.98	0.3	0.25	0.09	0.1	0.21	0.15	0.06	0.09	0.26
Oksiklordan	10.72	0.56	0.41	0.09	0.72	0.74	0.48	0.32	0	0.95
Heptaklorepoksidcis	36.88	57.64	5.02	61.12	6.16	69.91	11.82	2.12	13.03	1.88
Heptaklorepoksid trans	0	0.03	0.04	0	0	0.09	0	0.03	0	0.03
Klordan trans	0.53	0	0.02	0	0.34	0	0.08	0	0.01	0
2,4'-DDE	0.82	0.02	0	0	0.39	0.05	0.08	0	0	0
Endosulfanalfa	0.67	0	0.15	0	0.43	0	0.13	0	0	0
Klordancis	0.88	0.08	0.22	0	0.43	0.18	0.22	0	0.03	0
Dieldrin	4.1	0.56	1.85	0.03	0.86	0.49	0.56	0	0.08	0
4.4'-DDE	1.54	0.66	0.22	0.04	2.73	0	0.92	0.09	0.26	0.09
2.4-DDD	1.8	0.38	0.08	0.09	1.04	0.51	0.48	0.09	0	0.09
Endrin	1.09	0.07	0.05	0	0.84	0.07	0.04	0	0	0
Endosulfan beta	1.04	0	0.02	0	0.74	0	0.13	0	0.04	0
4.4-DDD	0	0	0	0	0	0	0	0	0	0
2.4-DDT	1.61	0.52	0.17	0	0	0.2	0	0	0	0
Klordekon	1.99	0	0	0	0.5	0.23	0.44	0	0	0
Endosulfansulfat	0.21	0	0.1	0	0.71	0	1.28	0	0	0
4,4'-DDT	0.43	0.78	0.25	0.06	2.9	0	1.06	0.13	0.24	0.13
Dikofol	18.34	6.95	1.09	0	0.37	1.37	1.38	0.55	7.34	0.55
Metoksiklor	1.44	0.1	0	0	0.6	0.29	0	0.12	0	0.12
Mirex	0.69	0.4	0.66	0.46	0.68	0.31	0.13	1.64	69.57	1.64

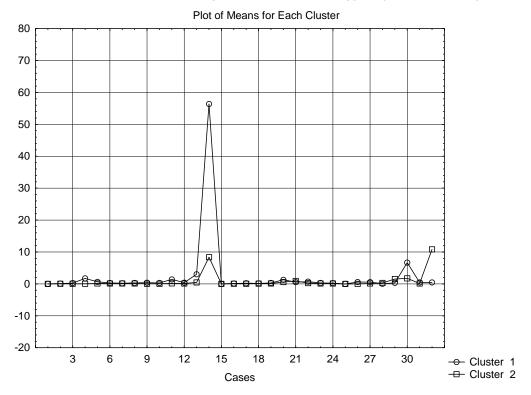
MULTIVARIANTE ANALYZE USED FOR INTERPRETATION

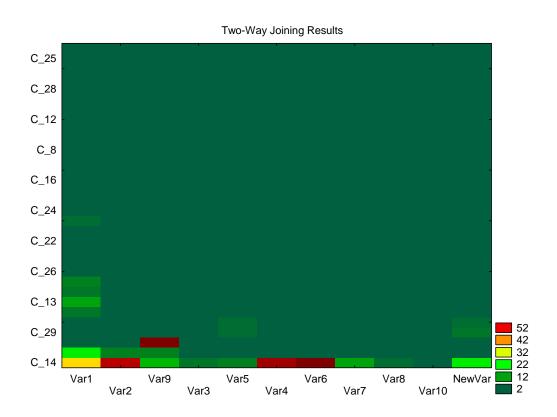
Tree Diagram for 11 Variables Single Linkage Euclidean distances

	Euclidea	n distan	ces (Spr	eacsheet	1")							Variable	Mean	Std Dev
Variable	Var1	Var2	Var3	Var4	Va:5	Vari	Var7	Var8	Var9	Var10	NevVar	Var1	3.302500	/ 14023
Var1	0.0	27.7	38.3	33.9	36.3	39.6	33.6	41.3	75.3	41.8	23.€	Var2	2 203750	10 18893
Var2	27.7	3.0	53.3	7 9	62.0	13 ±	45.2	55.3	82.3	55.2	34 9	Var3	0.378750	0.92666
Var3	38.9	53.0	0.0	56.1	4.5	34.6	7.2	3.7	69.7	3.9	14.5	Var4	1 952813	10 /9/11
Var4	33.9	7.9	56.1	0.0	55.2	9.0	4: 4	59.1	64.5	55.3	43.0	Var5	0.708750	1 20002
Var5	38.3	52.0	4.5	E5.2	€.0	33 C	8.6	6.	69.7	3.3	3.0	Var6	2.357188	12.33013
Varu	39.6	10.5	61.9	9.0	63.9	0.0	65.1	67.0	09.0	65.1	51.0	Var7	0.623125	2.07097
Var7	33.6	43.2	7.2	414	6.6	58 1	0.0	10 1	60.7	10.3	3.7	Var8	0.192133	0.46331
Var8 Var9	41.6 75.3	82 3	3.7 69 /	59.0 64.5	6.1	57.6 89.8	10:1 69:7	69 1	09.1	0.0 69.2	17.6 58.9	Var9	2.015625	12,14951
Var10	41.6	55.2	3.3	59.5	63	50.1	10.3	0.3	63.2	2.0	17.6	Var10	0.202500	0.45123
NewVar	29.8	39.9	14.4	43.0	13.0	51.8	87	17.5	68.9	1/8	2.0	NewVar	0.967500	3.39940

	Spreace rep.1				1120		10 101		220	Service 1	
	Vari	Var2	3 Varit	Vant.	E Var5	Van6	7 Varī	i Vari	Va 9	10 Var10	NewVar
Vari	C innece	27.18.11V	38 85676	20 36 466	312/313	35 45007	33157054	35 E0576	6: 2523	43.304450	79 75009
Va:2	27 (8)117	0.00000	57 97 191	7.96500	57,02917	23 56 250	49 (1936)	76 S 1967	1200374	64 0758	39.5.170.0
Vari	38 9/ 876	52.5779	0 33300	.66 10 H38	4.63517	64 91298	2.39141	3 67506	FD 38210	3 90 043	V 895/0
Vari	30,94,466	7.91938	56 14838	0.00000	55 (6.232)	F T5/85	41.38325	59.01525	81 52541	59.26139	/3.045/8
V8/5	38.27949	52.02817	5351	66.15231	0.00000	63,90885	5.57273	6.123/4	60.71902	5.25570	12.5 3332
Va 5	39.81107	13.54150	64,91298	8.95788	53.50 535	0.00000	68.12130	37,815	80.82936	68,05203	51,75082
Var/	33.57008	45.18555	7,195-1	45.36425	5.57273	58.12430	0.00000	10.06219	60.73280	10.29801	8.66002
Vars.	41.80526	55.01567	3,5/506	65.01623	5.123/4	67.81511	10.06219	0.00000	60,13685	3,77211	17.5355
VarJ	75.25238	82.31974	69.68210	84.5 541	33.71332	80.82936	69,73289	69, 12635	0.00000	69.18665	58.50521
Var U	11.8 180	55.16750	3,323/3	69,26131	8,265/0	68,05303	10.25801	0.77311	60,18066	0.00000	17.81347
NewVar	25,76005	39,63747	14,80840	43.04648	12.55 302	51.75982	3.66002	17.50554	68.00621	17.84547	0.00000
Meens	3.30250	2.203/5	0.37375	1,95281	0.70375	2.35715	0.62313	0.19219	2.3/563	0.20250	0.93/50
SUDE	7.14023	13.18593	0.32566	10 79711	1.20 002	12,33013	2.07857	8.45331	12,44951	3.45123	3,29346
No Cases	32,00000										
Manx	3.00000								9		

	_						
	Cluster Mea	Cluster Means (Spreadsheet1)					
	Cluster	Cluster					
Case ID	No. 1	No. 2					
C_1	0.03250	0.00714					
C_2	0.10250	0.04857					
C_3	0.25500	0.04143					
C_4	1.72000	0.04000					
C_5	0.64000	0.14857					
C_6	0.30500	0.14857					
C_7	0.21500	0.10857					
C_8	0.29750	0.13714					
C_9	0.39500	0.06000					
C_10	0.28750	0.05857					
C_11	1.42000	0.17714					
C_12	0.39500	0.15000					
C_13	3.02750	0.45857					
C 14	56.38750	8.37000					


	Euclidean Distances between Clusters (Spreadsh						
	Distances below diagonal						
Cluster	Squared dist	Squared distances above diagonal					
Number	No. 1	No. 2					
No. 1	0.000000	76.62121					
No. 2	8.753354	0.00000					


	Cluster Mea	Cluster Means (Spreadsheet1)						
	Cluster	Cluster						
Case ID	No. 1	No. 2						
C_1	0.03250	0.00714						
C_2	0.10250	0.04857						
C_3	0.25500	0.04143						
C_4	1.72000	0.04000						
C_5	0.64000	0.14857						
C_6	0.30500	0.14857						
C_7	0.21500	0.10857						
C_8	0.29750	0.13714						
C_9	0.39500	0.06000						
C_10	0.28750	0.05857						
C_11	1.42000	0.17714						
C_12	0.39500	0.15000						
C_13	3.02750	0.45857						
C 14	56.38750	8.37000						

	Euclidean Distances between Clusters (Spreadsheet								
	Distances be	Distances below diagonal							
Cluster	Squared dist	Squared distances above diagonal							
Number	No. 1	No. 2							
No. 1	0.000000	76.62121							
No. 2	8.753354	0.00000							

	Analysis of Variance (Spreadsheet1)							
	Between df Within		Within	df	F			
Case ID	SS		SS					
C_1	0.002	1	0.006	9	2.29519			
C_2	0.007	1	0.032	9	2.09776			
C_3	0.116	1	0.670	9	1.56059			
C_4	7.184	1	35.506	9	1.82108			
C_5	0.615	1	4.138	9	1.33693			
C_6	0.062	1	0.714	9	0.78537			
C_7	0.029	1	0.434	9	0.59793			
C_8	0.065	1	0.441	9	1.33697			
C_9	0.286	1	1.750	9	1.46921			
C_10	0.133	1	0.430	9	2.78981			
C_11	3.932	1	14.903	9	2.37453			
C_12	0.153	1	0.515	9	2.67065			
C_13	16.798	1	79.683	9	1.89734			
C 14	5869.004	1	822.109	9	64.25063			

MULTIVARIANTE ANALYZE USED FOR INTERPRETATION

4. Conclusions(in two columns)

Determination of organochlorinated pesticides and PCBs in soil samples were realized based on EU protocols in laboratory of Agricultural Institute located in Peja, Kosovo. Capillary GC/ECD were used for their qualitative and quantitative analyze.

All studied samples have the same distribution of organochlorinated pesticides. The most detected pesticides were: 24'-DDT, 44'-DDD, HCB, Isodrine, Heptachlor, alfa-Klordan. Note that for all samples were found in higher levels metabolites of organochlorinated pesticides (not organochlorinated pesticides). This fact suggests that found concentrations could be because of before use of organochlorinated pesticides in agricultural areas and their degradation. All found pesticides concentrations were lower than

Maximal allowed values (MAV) in the soil samples according Administrative Project instruction in Allowing Norms of Hazardous Substances and Harmful Presence in Soil, Prishtina, Kosovo, 2011.

PCBs were not detected for the main part of samples. PCB 52 and PCB 138 were most detected biphenyls. PCB 52 presence could be because of atmospheric factors. PCB 138 presence could be because of its physic-chemic properties. PCB levels were lower than Maximal allowed values (MAV) in the soil samples according Administrative Project instruction in Allowing Norms of Hazardous Substances and Harmful Presence in Soil, Prishtinw, Kosovo, 2011

6. References (in two columns)

- Arabie, P. Hubert, L.andSoete, G.D. (1996) An overview of combinatorial data analysis. Clustering and claficitation. World Scientific. 188-217
- 2. Ball, G.and Hall, D. (1997). A clustering technique for summarizing multivariate data. Behavior Sciences, 12, 153-155.
- 3. Baumard, P., Budzinski, H. and Garrigues, P. (1998) Polycyclic aromatic hydrocarbons in sediments and mussels of the Western Mediterranean Sea. Environmental Toxicological Chemistry 17, 765-776.
- 4. Berkhin P., "A Survey of Clustering Data Mining Techniques" Kogan, Jacob; Nicholas, Charles; Teboulle, Marc (Eds) Grouping Multidimensional Data, Springer Press (2006) 25-72.
- 5. Di Muccio, (1996) Organoclorine, Pyrethrin and Pyrethroid Insecticides: Single Class, Multiresidue Analysis of Pesticides. Pesticides. 6384-6411
- 6. Downs GM, Barnard JM: Clustering Methods and Their Uses in Computational Chemistry. In Reviews in Computational Chemistry. Volume 18. Chichester: Wiley and Sons; 1-40, 2003.
- 7. Beltran J., Lopez F.J., Hernandez F..Solid-phase microextraction in pesticide residue analysis. Journal of Chromatography A, 885 (2000)

- 8. Di Muccio, 1996. Organoclorine, Pyrethrin and Pyrethroid Insecticides: Single Class, Multiresidue Analysis of. Pesticides.Pesticides. 6384-6411
- Erickson, M.D. (2001). Introduction: PCB properties, uses, occurrence, and regulatory history. In: Robertson, L.W., Hansen, L.G. (Eds.), PCBs: Recent Advances in Environmental Toxicology and Health Effects. The University Press of Kentucky, Lexington, Kentucky, pp. 131–152.
- 10. Muir D. and Sverko E., Analytical methods for PCBs and organochlorine pesticides in environmental monitoring and surveillance: a critical appraisal. Trends Anal. Chem., 386, 769, 2006.
- 11. Nuro A. and Marku E.. "Determination of Organochlorinated Pesticides and their Residues in soil samples of Albania agricultural areas" Proceeding book of Konference: "Chemistry and devlopment of Albania" ISBN: 978-99956-10-41-8, Fq 211-216 (2011), Tirana, Albania
- 12. NuroA.andMarku E.. "Study of Organchlorinated pollutants in Sediments of North Albania" International Journal of Ecosystems and Ecology Sciences (IJEES), Vol 2, Issue 1, Fq. 15-20 (2012)