# RESEARCH ARTICLE

# Agricultural University of Tirana

# (Open Access)

# Evaluation of drought resistance of barley (*Hordeum vulgare* L.) cultivars using agronomic characteristics and drought tolerance indices

MOHSEN SAEIDI<sup>1</sup>, MAJID ABDOLI<sup>2,3\*</sup>, MANDANA AZHAND<sup>4</sup>, MARYAM KHAS-AMIRI<sup>4</sup>

<sup>1</sup>Assistant Prof., Department of Agronomy and Plant Breeding, Campus of Agriculture and Natural Recourse, Razi University, Kermanshah, Iran.

<sup>2</sup>Ph.D. Student in Crop Physiology, Department of Agronomy and Plant Breeding, Faculty of Agriculture, Maragheh University,

# Maragheh, Iran.

<sup>3</sup>Young Researchers and Elite Club, Zanjan Branch, Islamic Azad University, Zanjan, Iran.

<sup>4</sup>Former M.Sc. Student in Agronomy, Department of Agronomy and Plant Breeding, Campus of Agriculture and Natural

Recourse, Razi University, Kermanshah, Iran.

#### Abstract:

In order to determine the performance of barley under drought stress conditions and screening quantitative indices of drought tolerance, twelve barley (Hordeum vulgare L.) cultivars were tested in a split-plot arranged in a randomized complete blocks design with three replications under irrigated and post-anthesis water deficiency conditions. This study was carried out in the field research of campus of agriculture and natural resources, Razi university, Kermanshah state in the west of Iran during 2010-2011. The results showed that post anthesis water deficiency caused 22, 18.3, 5.9, 5.5 and 21.9 percent reduction in grain yield, biomass, thousand grain weight, number of grain per spike and number of spike per m<sup>2</sup> in average respectively, but had no significant effect on harvest index. Mean comparisons showed that Nosrat cultivar with 838 g m<sup>-2</sup> and Afzal cultivar with 392 g m<sup>-2</sup>, respectively had the highest and the lowest grain yield under non-stress condition. Under water stress environment Nosrat and Karoun cultivars with 696 and 656 g m<sup>-2</sup> and also, Aras and Sahra cultivars with 322 and 327 g m<sup>-2</sup>, respectively had the highest and the lowest grain yield. The estimates of stress tolerance attributes indicated that the identification of drought-tolerant genotypes based on a single criterion was contradictory. For example, according to STI, GMP and MP cultivars Nosrat, Karoun and Sararud were the most, whereas Aras and Afzal cultivars the least relative tolerant genotypes. As to YI cultivars Nosrat, Karoun and Sararud were the most and Aras, Sahra and Afzal the least relative tolerant genotypes, According to YSI, SSPI, RDI and ATI indices selected the Sararud and Zarjo cultivars as the most relatively tolerant genotypes. DI selected the cultivars Sararud, Nosrat and Karoun as the best, while the cultivars Sahra, Aras and Reihan as the the worst relatively tolerant genotypes. Grain yield in stress condition was significantly and positively correlated with MP, GMP, STI, Harm, YI and DI. Also, grain yield in non-stress condition was significantly and positively correlated with MP, GMP, STI, Harm, YI, DI and ATI indicating that these criteria were more effective in identifying high yielding cultivars under different moisture conditions.

Keywords: Barley, Water deficiency, Agronomic characteristics, Drought tolerance indices.

**Abbreviations:** Grain Yield (Y), Biomass (B), Harvest Index (HI), Thousand Grain Weight (TKW), Number of Grain per Spike (NGPS), Number of Spike per m<sup>2</sup> (NSPM), Potential Yield (Yp), Stress Yield (Ys), Stress Susceptibility Index (SSI), Stress Tolerance Index (STI), Geometric Mean Productivity (GMP), Tolerance (TOL), Mean Productivity (MP), Relative Drought Index (RDI), Yield Index (YI), Yield Stability Index (YSI), Drought Resistance Index (DI), Abiotic Tolerance Index (ATI) and Stress Susceptibility Percentage Index (SSPI).

#### 1. Introduction

Barley (*Hordeum vulgare* L.) is grown as a commercial crop in one hundred countries and is one of the most important cereal crops in the world. Barley assumes the fourth position in total cereal production in the world after wheat, rice and maize [13]. Among all the factors limiting barley productivity, drought

remains the single most important factor affecting the world security and sustainability in agricultural production.

Drought, the most important factor limiting considered for crops successful production in world wide. This problem, combined with physical and environmental factors that trigger stress in plants and reduce growth. Water stress caused by delay, weaken

Correspondence: Majid Abdoli, Department of Agronomy and Plant Breeding, Faculty of Agriculture, Maragheh University, Maragheh, Iran; Email: <u>majid.abdoli64@yahoo.com;</u> (Accepted for publication 17 October 2013)

and/or lack of seedling establishment. Thus, conditions prepare for epidemic diseases, plant pests attack, physiological and biochemical changes. Even in cases of minor, injured and ultimately with reduction growth, damages yield [1]. So that, drought stress is the most significant environmental factor to impact on growth and yield of crops and it affects 40 to 60% of the world's agricultural lands [8].

To evaluate response of plant genotypes to drought stress, some selection indices has been proposed based on a mathematical relation between stress and optimum conditions [9, 17]. Drought indices which provide a measure of drought based on loss of yield under drought condition in comparison to normal condition have been used for screening drought tolerant genotypes [31]. These indices are either based on drought resistance or susceptibility of genotypes [17]. Drought resistance is defined by Hall [24] as the relative yield of genotype compared to other genotypes subjected to the same drought stress [24]. Drought susceptibility of a genotype is often measured as a function of the reduction in yield under drought stress [5].

Breeding for drought resistance is complicated by the lack of fast, reproducible screening techniques and the inability to routinely create defined and repeatable water stress conditions when a large amount of genotypes can be evaluated efficiently [41]. Achieving a genetic increase in yield under these environments has been recognized to be a difficult challenge for plant breeders while progress in grain yield has been much higher in favourable environments [42]. Thus, drought indices which provide a measure of drought based on yield loss under drought condition in comparison to normal condition have been used for screening drought-tolerant genotypes [31].

Rosielle and Hamblin [43] defined stress tolerance (TOL) as the differences in yield between the stress and non-stress environments and mean productivity (MP) as the average yield under stress and non-stress environments. Fischer and Maurer [18] proposed a stress susceptibility index (SSI) of the cultivars. Fernandez [17] defined a new advanced index (STI), which can be used to identify genotypes that produce high yield under both stress and nonstress conditions. Other yield based estimates of drought resistance are geometric mean (GM), MP and TOL. The Geometric mean is often used by breeders interested in relative performance since drought stress can vary in severity in field environment over years [41]. Fischer and Wood [19] introduced another index as relative drought index (RDI). Bidinger *et al.* [4] suggested drought response index (DRI) with its positive values indicating stress tolerance. Other yield based estimates of drought resistance are yield index (YI) [20] and yield stability index (YSI) [7].

Yield stability index (YSI) also was computed and suggested by Bouslama and Schapaugh [7]. This parameter is calculated for a given genotype using grain yield under stressed relative to its grain yield under non-stressed conditions. The genotypes with high YSI is expected to have high yield under stressed and low yield under non-stressed conditions [32]. In present study, drought tolerance in twelve genotypes of barley was investigated under post-anthesis drought stress conditions based on drought tolerance indices.

# 2. Materials and Methods

#### 2.1. Plant material and treatments

This research carried out during 2010-2011 in the field research of campus of agriculture and natural resources, Razi university, Kermanshah state in the west of Iran (34° 20' N latitude, 47° 20' E longitude, elevation 1351 m above see level) in the moderatecold and semi arid zone. he soil was a clay loam (36.1% clay, 30.7% silt) and the experiment was laid out in a split-plot arranged in a randomized complete blocks design with three replications. Two levels of moisture regimes (includes: irrigation in all stages of plant growth normally and post anthesis water deficiency with withholding of irrigation) as the mainplot and different improved cultivars (includes: Aras, Afzal, Jonub, Reihan, Zarjo, Sararud, Sahra, Fajr-30, Karoun, Gorgan-4, Makuei and Nosrat) as sub-plot were considered. Date of anthesis was determined from middle rows in each plot when 50% of the spikes had extruded anthers [12]. Seeds were sown at a density of 400 seeds m<sup>-2</sup> on 12<sup>th</sup> October. Humidity and moderate temperatures during the crop season is presented in Table 1.

# 2.2. Grain yield and some agronomic traits

Grain yield, biomass and number of spike per  $m^2$  for each cultivar were measured by harvesting 1  $m^2$  of the central part of each plot at crop maturity. Harvest index was measured by dividing grain yield to biomass production. In order to measuring grain yield components such as: number of grain per spike and thousand grain weight, 10 plants randomly selected and measurements were performed.

| Month | Te   | emperature | (C•) | Precipitation (mm) | Rela | tive Humid | ity (%) |
|-------|------|------------|------|--------------------|------|------------|---------|
|       | Min  | Max        | Mean | -                  | Min  | Max        | Mean    |
| Oct.  | 10.6 | 30.3       | 20.4 | 1                  | 13.2 | 46.4       | 29.8    |
| Nov.  | 4.5  | 21.9       | 13.2 | 31                 | 22.8 | 66.8       | 44.8    |
| Dec.  | -1.5 | 16.8       | 7.7  | 24                 | 26.5 | 62.4       | 44.5    |
| Jan.  | -2.2 | 9.6        | 3.7  | 50                 | 47.1 | 91.0       | 69.1    |
| Feb.  | -2.7 | 8.0        | 2.7  | 65                 | 52.1 | 94.2       | 73.2    |
| Mar.  | 0.6  | 15.4       | 8    | 21                 | 28.1 | 82.0       | 55      |
| Apr.  | 4.5  | 20.1       | 12.3 | 47                 | 24.6 | 78.8       | 51.7    |
| May.  | 9.5  | 23.6       | 16.5 | 128                | 33.6 | 87.4       | 60.5    |
| Jun.  | 12.8 | 33.8       | 23.3 | 0                  | 11.3 | 51.1       | 31.2    |
| Jul.  | 17.1 | 38.5       | 27.8 | 0                  | 6.6  | 32.1       | 19.4    |
| Aug   | 18.1 | 39.5       | 28.8 | 0                  | 6    | 27.7       | 16.9    |
| Sep   | 13.8 | 34.6       | 24.2 | 0                  | 7.8  | 32.0       | 19.9    |

**Table 1.** Minimum, maximum and mean of temperature and relative humidity also precipitation in the

 Kermanshah region in the west of Iran during 2010-2011.

Table 2. Drought tolerance indices.

| Index                                       | Formula                                                                                                                                   | Reference                   |
|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| Stress Susceptibility Index<br>Stress Index | SSI = [1 - (Ys / Yp)]/SI                                                                                                                  | Fischer and Maurer [18]     |
|                                             | $SI = \left(1 - \frac{\overline{Y}s}{\overline{Y}p}\right)$                                                                               |                             |
| Stress Tolerance                            | TOL = Yp - Ys                                                                                                                             | Rosielle and Hamblin [43]   |
| Mean Productivity                           | $MP = \frac{Ys + Yp}{2}$                                                                                                                  | Rosielle and Hamblin [43]   |
| Geometric Mean Productivity                 | $GMP = \sqrt{Ys \times Yp}$                                                                                                               | Fernandez [17]              |
| Stress Tolerance Index                      | $STI = \frac{Yp}{\overline{Y}p} \times \frac{Ys}{\overline{Y}s} \times \frac{\overline{Y}s}{Yp} = \frac{Yp \times Ys}{(\overline{Y}p)^2}$ | Fernandez [17]              |
| Harmonic Mean                               | $HARM = \frac{2(Yp \times Ys)}{Yp + Ys}$                                                                                                  | Kristin <i>et al.</i> [27]  |
| Relative Drought Index                      | $RDI = \frac{(Ys \times Yp)}{(\overline{Ys} + \overline{Yp})}$                                                                            | Fischer and Wood [19]       |
| Yield Index                                 | $YI = \frac{Ys}{\overline{Y}p}$                                                                                                           | Lin <i>et al.</i> [29]      |
| Yield Stability Index                       | $YSI = \frac{Ys}{Yp}$                                                                                                                     | Bouslama and Schapaugh [7]  |
| Drought Resistance Index                    | $DI = \frac{Ys \times (Yp \times Ys)}{\left(\overline{Ys}\right)}$                                                                        | Lan [28]                    |
| Abiotic Tolerance Index                     | $ATI = \left[\frac{(Yp - Ys)}{(\overline{Y}p / \overline{Y}s)}\right] \times \sqrt{Yp \times Ys}$                                         | Moosavi <i>et al</i> . [34] |
| Stress Susceptibility Percentage<br>Index   | $SSPI = \frac{(Yp - Ys)}{2(\overline{Y}p)} \times 100$                                                                                    | Moosavi <i>et al.</i> [34]  |

Yp and Ys: Grain yield of each genotype under non-stress and stress conditions, respectively.

 $\tilde{Y}p$  and  $\tilde{Y}s$ : Mean grain yield of all genotypes under non-stress and stress conditions, respectively.

#### 2.3. Drought resistance indices

In order to estimates the sensitivity and tolerance indices in post anthesis water stress in different improved wheat cultivars, the relationships that proposed by Fischer and Maurer [18], Rosielle and Hamblin [43], Fernandez [17], Kristin *et al.* [27], Lin *et al.* [29], Lan [28], Moosavi *et al.* [34], Fischer and Wood [19] and Bouslama and Schapaugh [7] were used. These indices are includes (Table 2).

#### 2.4. Statistical analysis

Statistical analyses were performed using MSTATC and SAS softwares. Mean comparisons were also performed using LSD at 5% level.

#### **3. Result and Discussion**

# 3.1. Effects of post-anthesis water deficiency on agronomic traits

The results obtained from mean comparison analysis of grain yield and its components are shown in Table 2. showed that post anthesis water deficiency stress caused 22, 18.3, 5.9, 5.5 and 21.9% reduction in grain yield, biomass, thousand grain weight, number of grain per spike and number of spike per m<sup>2</sup> in average respectively, but had no significant effect on harvest index. The averages of grain yield, biological weight (dry matter weight) and thousand grain weight of different cultivars in well watered condition were 613 g m<sup>-2</sup>, 1660 g m<sup>-2</sup> and 41.1 g respectively, while under water deficiency stress these values significantly reduced to 478 g m<sup>-2</sup>, 1356 g m<sup>-2</sup> and 38.7 g. Gupta et al. [22] evaluated two spring wheat cultivars, Kalyansona and C-306, for yield and yield attributes and noted that water stress caused significant reduction in plant height, leaf area, number of grain per spike, test weight and yield.

The results showed that there were significant differences among genotypes in respect to grain yield under condition. Also, significant non-stress differences were observed among genotypes under stress condition (Table 3). These results demonstrate high diversity among genotypes that enable us to select genotypes under non-stress and stress environments. Grain yield of main spike of wheat genotypes is significantly affected due to severe water stress. Mean comparisons showed that Nosrat cultivar with 838 g m<sup>-</sup>  $^{2}$  and Afzal cultivar with 392 g m<sup>-2</sup>, respectively had the highest and the lowest grain yield under non-stress condition (Table 3). Under water stress environment Nosrat and Karoun cultivars with 696 and 656 g m<sup>-2</sup> and also. Aras and Sahra cultivars with 322 and 327 g m<sup>-2</sup>, respectively had the highest and the lowest grain yield. Blum and Pnuel [6] reported that the final grain yield and its associated traits of bread wheat were significantly decreased due to water stress. Reduction in grain weight of wheat was also reported by various other researchers [1, 2, 36]. Kar et al. [25] observed that under water deficit condition, supplemental irrigation during reproductive phases had a significant effect on increasing seed yield. Water stress at flowering negatively influenced the formation of grain, seed size, resulting in lower final grain yield.

At normal irrigation, comparison of means among all genotypes under study showed significan differences with each other. The highest (48.8 and 48 g) thousand grain weight was noted in Sararud and Gorgan-4 cultivars and lowest (36.3 g) was in Fajr-30 (Table 3). Post-anthesis water stress reduced thousand grain weight of all genotypes. In term of the thousand grain weight under water stress condition, Sararud cultivar had the highest (44.5 g) and Fajr-30 cultivar had the lowest values (33.7 g). The results of this conform to the findings of Karim et al. [26] and Baque et al. [3] who reporteds that water stress reduced grain yield by reducing productive tillers per plant, fertile spikelet per plant, number of grains per plant and individual grain weight.

Water stress at anthesis caused significant effect on yield traits and cultivars also showed significant variability for grain spike<sup>-1</sup>, grain yield per plant, biological weight (dry matter weight) and harvest index. In term of the harvest index under well water condition, Nosrat and Fajr-30 cultivars had the highest (42.1%) and Afzal cultivar had the lowest values (25.3%). But, under post anthesis water deficiency stress Sararud and Fajr-30 cultivars had the highest (42.3 and 41.4%, respectively) and Aras cultivar lowest (27.7%) values (Table 3).

Mean comparisons showed that Karoun cultivar with 2230 g m<sup>-2</sup> and also, Aras and Reihan cultivars (1350 and 1380 g m<sup>-2</sup>), respectively had the highest and the lowest biological yield under well water condition (Table 3). Under water stress environment Karoun cultivar with 1880 g m<sup>-2</sup> and Sahra cultivar with 1020 g m<sup>-2</sup>, respectively had the highest and the lowest biological yields.

It can be seen from the data in Table 3. that significant differences were found among cultivars in terms of the number of grain per spike and number of spike per  $m^2$ . In term of the number of grain per spike under well water condition, Karoun and Makuei cultivars had the highest (45.8 and 43.2 grain spike<sup>-1</sup>) and Sararud cultivar had the lowest values (18.9 grain spike<sup>-1</sup>). Under post anthesis water deficiency stress Karoun and Makuei cultivars had the highest (41.5 and 41.4 grain spike<sup>-1</sup>, respectively) and Sararud cultivar lowest (18.6 grain spike<sup>-1</sup>) values (Table 3). Edward and Wright [11] in their studies also reported that the yield components like grain number and grain size were decreased under pre-anthesis drought stress treatment in wheat. Water stress at various stages specially before anthesis can reduce number of heads and number of kernels per ear [10, 23].

In term of the number of spike per  $m^2$  under nonstress condition, Sararud and Gorgan-4 cultivars had the highest (701 and 686 spike  $m^{-2}$ , respectively) and Sahra cultivar had the lowest values (383 spike  $m^{-2}$ ). Under post anthesis water deficiency stress Sararud and Sahra cultivars had the highest (607 spike  $m^{-2}$ ) and lowest (262 spike  $m^{-2}$ ) values. The effects of water stresses during various growth stages on various morphological traits such as tillers, number of spike per  $m^2$ , number of grain per spike, thousand grain weight, spike weight and grain weight per spike, have also been reported in wheat by several researchers [37, 39, 42].

In well water and water deficiency conditions a correlation was found between grain yield and the biomass, harvest index and number of spike per m<sup>-2</sup> (Table 6). Also, in well water and water stress conditions a negative correlation was found between thousand grain weight and the number of grain per spike (Table 6). The findings of the current study are consistent with those of Moral *et al.* [35] who found that also negative correlation between these two traits. They concluded that this negative correlation is related to compensation effect of yield components on each other. In this situation, by increasing the number of grain per spike, plants can not fill all of them and then this is caused shrinking of grains and finally caused weight loss of the grains.

#### 3.2. Assessment of drought resistance indices

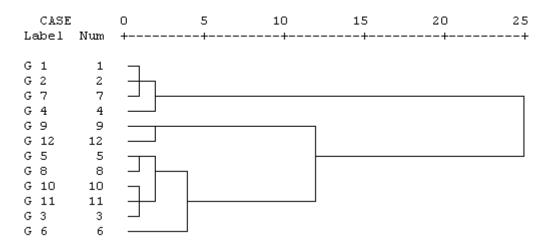
Data concerning yield (Yp and Ys ) and indices are given in Table 4. The estimates of stress tolerance attributes (Table 4) indicated that the identification of drought-tolerant genotypes based on a single criterion was contradictory. For example, according to STI, GMP and MP cultivars Nosrat, Karoun and Sararud were the most, whereas Aras and Afzal cultivars the least relative tolerant genotypes. For TOL and SSI the desirable drought tolerant genotypes were Sararud, Afzal and Zarjo. As to YI cultivars Nosrat, Karoun and Sararud were the most and Aras, Sahra and Afzal the least relative tolerant genotypes (Table 4). According to YSI, SSPI, RDI and ATI indices selected the Sararud and Zarjo cultivars as the most relatively tolerant genotypes. DI selected the Sararud, Nosrat and Karoun cultivars as the best, while the Sahra, Aras and Reihan cultivars as the the worst relatively tolerant genotypes. Majidi et al. [30] reported that GMP, STI and HM indices were similarly able to separate drought sensitive and tolerant genotypes of safflower in both mild and intense water stress environments. Talebi et al. [44] also reported that cultivars producing high yield in both drought and well watered conditions can be identified by STI, GMP and MP values. Pireivatlou *et al.* [38] was also noted that STI can be a reliable index for selecting high yielding cultivars.

Yield in stress (Ys) condition was significantly and positively correlated with MP, GMP, STI, Harm, YI and DI. Yield in non-stress (Yp) condition was significantly and positively correlated with MP, GMP, STI, Harm, YI, DI and ATI indicating that these criteria were more effective in identifying high yielding cultivars under different moisture conditions (Table 5). Farshadfar et al. [15] reported that the results under both stress environments indicated positive and significant correlations between Yp with TOL, MP, GMP, STI, YI, DI, K<sub>1</sub>STI, K<sub>2</sub>STI, ATI and SSPI selection indices. Also, Majidi et al. [30] reported that the results under both stress environments indicated positive and significant correlations between Yp with TOL, MP, GMP, STI, SSI and HM selection indices. They reported that correlations between YS with GMP, STI, and HM indicated that selection based on these indices may increase yield in stress and nonstress conditions. Mollasadeghi [33] in a study evaluating 12 bread wheat genotypes concluded that the indices MP, GMP, STI and MSTI having the highest correlation with grain yield under normal irrigation and water stress conditions were introduced as superior indices.

Farshadfar *et al.* [16] believed that most appropriate index for selecting stress-tolerant cultivars is an index which has partly high correlation with grain yield under stress and non-stress conditions. The observed relations were consistent with those reported by Fernandez [17] in mungbean, Farshadfar and Sutka [14] in maize, Golabadi *et al.* [21] in durum wheat and Abdoli and Saeidi [1] in wheat.

Ramirez and Kelly [41] reported that selection based on a combination of both SSI and GM indices may provide a more desirable criterion for improving drought resistance in common beans. Guttieri *et al.* [23], using SSI criterion in spring wheat, suggested that more than 1 unit of SSI value may indicate aboveaverage susceptibility for drought stress and less than one unit has below-average susceptibility. Golabadi *et al.* [21] found that STI, MP, and GMP are superior indices for selecting high yield durum wheat genotypes both under moisture stress and non-stress field environments. Pourdad [40] reported that STI was the best index to identify superior cultivated safflower genotypes in conditions both with and without drought stress.

| Tai                                                                                                                                                                                        | Table 5. Mean comparisons of grain yield and some | comparison                 | s of grain  | vield and som        | ie agrono       | mic traits in e | different t | oarley cultive | rs under J | agronomic traits in different barley cultivars under post anthesis water deficiency. | water def | iciency.      |          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|----------------------------|-------------|----------------------|-----------------|-----------------|-------------|----------------|------------|--------------------------------------------------------------------------------------|-----------|---------------|----------|
| Condition                                                                                                                                                                                  |                                                   | Y                          | Ċ           | B                    | D               | IH              | D           | TKW            | D          | SUCN                                                                                 | D         | NGSN          | D        |
| Condition                                                                                                                                                                                  | Culuvars                                          | (g m <sup>-2</sup> )       | (%)         | (g m <sup>-2</sup> ) | (%)             | (%)             | (%)         | (g)            | (%)        | CION                                                                                 | (%)       | INITICN       | (%)      |
| Well water                                                                                                                                                                                 | Aras                                              | $413 \pm 17$               |             | $1350 \pm 30$        |                 | $30.6 \pm 0.4$  |             | $38.0 \pm 0.5$ |            | $23.3\pm1.1$                                                                         |           | $593 \pm 46$  |          |
|                                                                                                                                                                                            | Afzal                                             | $392 \pm 1$                |             | $1550 \pm 0$         |                 | $25.3 \pm 0.1$  |             | $39.4 \pm 3.5$ |            | $36.6 \pm 1.4$                                                                       |           | 427±12        |          |
|                                                                                                                                                                                            | Jonub                                             | 748±33                     |             | $1870 \pm 130$       |                 | $40.0 \pm 0.1$  |             | $38.2 \pm 1.3$ |            | $41.7 \pm 3.6$                                                                       |           | $628 \pm 31$  |          |
|                                                                                                                                                                                            | Reihan                                            | $490 \pm 62$               |             | $1380 \pm 20$        |                 | $35.5 \pm 3.9$  |             | $39.3 \pm 2.5$ |            | $37.9 \pm 1.8$                                                                       |           | $435 \pm 30$  |          |
|                                                                                                                                                                                            | Zarjo                                             | 548±42                     |             | $1420 \pm 0$         |                 | $38.6 \pm 3.0$  |             | $44.8 \pm 1.3$ |            | $39.1\pm 2.1$                                                                        |           | 486±49        |          |
|                                                                                                                                                                                            | Sararud                                           | 659±59                     |             | $1660{\pm}160$       |                 | 39.7±0.6        |             | 48.8±4.7       |            | $18.9 \pm 1.0$                                                                       |           | 701±8         |          |
|                                                                                                                                                                                            | Sahra                                             | $473 \pm 10$               |             | $1460 \pm 20$        |                 | $32.4\pm0.5$    |             | $45.6 \pm 0.8$ |            | $33.6 \pm 4.1$                                                                       |           | 383±12        |          |
|                                                                                                                                                                                            | Fajr-30                                           | $611\pm3$                  |             | $1450 \pm 10$        |                 | $42.1 \pm 0.9$  |             | $36.3 \pm 3.0$ |            | $42.5 \pm 1.6$                                                                       |           | 525±32        |          |
|                                                                                                                                                                                            | Karoun                                            | 778±7                      |             | $2230\pm10$          |                 | $34.9 \pm 0.3$  |             | $37.9 \pm 1.8$ |            | $45.8 \pm 2.2$                                                                       |           | 662±31        |          |
|                                                                                                                                                                                            | Gorgan-4                                          | 707±42                     |             | $1850 \pm 30$        |                 | $38.2\pm1.6$    |             | $48.0 \pm 3.1$ |            | $22.7\pm1.0$                                                                         |           | $686 \pm 17$  |          |
|                                                                                                                                                                                            | Makuei                                            | $699 \pm 1$                |             | $1710\pm 230$        |                 | $40.9 \pm 3.1$  |             | $38.7 \pm 0.8$ |            | $43.2 \pm 1.2$                                                                       |           | 586±39        |          |
|                                                                                                                                                                                            | Nosrat                                            | $838{\pm}13$               |             | $1990 \pm 0$         |                 | $42.1 \pm 0.6$  |             | $38.1 \pm 1.9$ |            | $42.4{\pm}2.0$                                                                       |           | 597±52        |          |
| Water deficiency                                                                                                                                                                           | Aras                                              | 322±5                      | -22.1       | $1160 \pm 10$        | -14.1           | 27.7±0.2        | -9.3        | $36.3 \pm 1.1$ | -4.4       | $23.0 \pm 1.0$                                                                       | -1.5      | 505±35        | -14.8    |
|                                                                                                                                                                                            | Afzal                                             | 339±37                     | -13.4       | $1100 \pm 30$        | -29.0           | $30.8 \pm 3.2$  | 22.0        | $38.4{\pm}1.9$ | -2.6       | $35.9 \pm 4.5$                                                                       | -1.9      | $308{\pm}40$  | -27.9    |
|                                                                                                                                                                                            | Jonub                                             | 489±79                     | -34.6       | $1340 \pm 140$       | -28.3           | $36.5 \pm 1.7$  | -8.8        | $37.4{\pm}1.1$ | -1.9       | $38.5 \pm 1.5$                                                                       | -7.6      | $450 \pm 10$  | -28.3    |
|                                                                                                                                                                                            | Reihan                                            | 363±36                     | -25.8       | $1190 \pm 10$        | -13.8           | $30.5\pm 2.3$   | -14.0       | $37.3 \pm 1.6$ | -4.9       | $35.4\pm 2.4$                                                                        | -6.7      | <b>296±28</b> | -32.0    |
|                                                                                                                                                                                            | Zarjo                                             | 493±3                      | <u>-9.9</u> | $1390 \pm 150$       | -2.1            | $35.5\pm 2.9$   | -8.0        | 42.7±0.5       | 4.8        | $39.0 \pm 0.2$                                                                       | -0.4      | $373\pm 21$   | -23.3    |
|                                                                                                                                                                                            | Sararud                                           | $630 \pm 40$               | -4.4        | $1490{\pm}10$        | -10.2           | $42.3\pm 2.1$   | 6.5         | 44.5±2.7       | -8.8       | $18.6 \pm 1.4$                                                                       | -1.9      | $607 \pm 4$   | -13.5    |
|                                                                                                                                                                                            | Sahra                                             | 327±27                     | -30.9       | $1020{\pm}100$       | -30.1           | 32.0±0.5        | -1.1        | $43.8 \pm 0.8$ | -3.9       | $31.0\pm 2.0$                                                                        | -7.9      | $262 \pm 6$   | -31.6    |
|                                                                                                                                                                                            | Fajr-30                                           | 476±30                     | -22.0       | $1150 \pm 10$        | -20.7           | $41.4 \pm 1.7$  | -1.7        | 33.7±2.4       | -7.2       | $40.9 \pm 0.1$                                                                       | -3.7      | $407 \pm 15$  | -22.5    |
|                                                                                                                                                                                            | Karoun                                            | 656±24                     | -15.6       | $1880 \pm 30$        | -15.7           | $34.9\pm1.2$    | 0.1         | $35.1{\pm}1.0$ | -7.4       | $41.5 \pm 0.5$                                                                       | -9.4      | $564{\pm}12$  | -14.8    |
|                                                                                                                                                                                            | Gorgan-4                                          | 458±48                     | -35.2       | $1270 \pm 110$       | -31.4           | $36.1 \pm 1.3$  | -5.6        | $43.5\pm 2.0$  | -9.3       | $21.3 \pm 0.5$                                                                       | -6.0      | 529±3         | -22.9    |
|                                                                                                                                                                                            | Makuei                                            | 489±25                     | -30.1       | $1430 \pm 50$        | -16.4           | $34.2\pm0.2$    | -16.4       | $35.0 \pm 0.6$ | -9.7       | $41.4{\pm}1.4$                                                                       | -4.2      | 423±3         | -27.8    |
|                                                                                                                                                                                            | Nosrat                                            | 696±27                     | -17.0       | $1850 {\pm} 0$       | -7.0            | 37.6±1.2        | -10.7       | $36.4 \pm 1.2$ | -4.5       | 37.7±0.4                                                                             | -11.2     | 516±8         | -13.6    |
| Well water                                                                                                                                                                                 |                                                   | 613 a                      |             | 1660 a               |                 | 36.9 a          |             | 41.1 a         |            | 35.6 a                                                                               |           | 559 a         |          |
| Water deficiency                                                                                                                                                                           |                                                   | 478 b                      | -22.0       | 1356 b               | -18.3           | 35.3 a          | -4.5        | 38.7 b         | -5.9       | 33.7 b                                                                               | -5.5      | 437 b         | -21.9    |
| CV (%)                                                                                                                                                                                     |                                                   | 9.25                       |             | 8.07                 |                 | 7.08            |             | 7.24           |            | 8.34                                                                                 |           | 7.77          |          |
| Y: Grain Yield (g m <sup>-2</sup> ), B: Biomass (g m <sup>-2</sup> ), HI: Harvest Index (%), TKW: Thousand Grain Weight (g), NGPS: Number of Grain per Spike and NSPM: Number of Spike per | g m <sup>-2</sup> ), B: Bio                       | omass (g m <sup>-2</sup> ) | , HI: Harve | st Index (%),        | <b>TKW: Thc</b> | usand Grain V   | Weight (g)  | NGPS: Num      | per of Gra | in per Spike ar                                                                      | nd NSPM:  | Number of S   | oike per |


 $m^2$ .  $\uparrow$  D (%): Percentage decrease down control when water deficiency was applied at post anthesis. Af (%): Percentage decrease down control when water deficiency was applied at post anthesis. Mean values followed by the same letter are not significantly different according to LSD (P < 0.05). Data were means  $\pm$  SE (n=3).

| Aras<br>Afzal<br>Jonub<br>Reihan<br>Zarjo<br>Sahra<br>Sahra<br>Karoun<br>Karoun | Aras         413.2         321.           Afzal         391.9         339.3           Jonub         748.4         489.3           Jonub         748.4         489.3           Jonub         748.4         489.3           Jonub         748.4         489.3           Reihan         489.8         363.3           Zarjo         547.7         493.3           Sahra         472.9         326.3           Sahra         472.9         326.3           Karoun         777.7         656.4           Karoun         777.7         656.3           Makuei         699.0         488.3           Makuei         699.0         488.3           Yo: Potential Yield, Ys: Stress         Yrp: Potential Yield, Ys: Stress           Productivity, RDI: Relative Dro         Susceptibility Percentage Index. | 321.9<br>339.3<br>489.2<br>363.4<br>493.2<br>630.0<br>326.8<br>476.2<br>656.1<br>478.3<br>488.9<br>695.9<br>695.9<br>695.9<br>695.9<br>trive Drougl            | 1.006<br>0.611<br>1.576<br>1.175<br>0.452<br>0.452<br>0.452<br>0.452<br>0.452<br>0.452<br>0.452<br>0.452<br>0.452<br>0.452<br>0.452<br>0.773<br>0.773<br>0.990<br>eld, SSI: Si<br>ht Index, Y | Aras413.2321.91.006 $0.354$ $36.$ Afzal391.9339.3 $0.611$ $0.354$ $36.$ Jonub748.4489.2 $1.576$ $0.974$ $60.$ Jonub748.8 $363.4$ $1.175$ $0.474$ $42.$ Reihan489.8 $363.4$ $1.175$ $0.474$ $42.$ Zarjo $547.7$ $493.2$ $0.452$ $0.719$ $510.$ Zarjo $547.7$ $493.2$ $0.452$ $0.719$ $510.$ Sahra $472.9$ $326.8$ $1.407$ $0.411$ $39.$ Fajr-30 $610.8$ $476.2$ $1.003$ $0.774$ $533.$ Karoun $777.7$ $656.1$ $0.712$ $1.358$ $716.$ Makuei $699.0$ $488.9$ $1.601$ $0.862$ $56.$ Makuei $699.0$ $488.9$ $1.368$ $0.909$ $58.$ Nosrat $838.3$ $695.9$ $0.773$ $1.552$ $76.$ Yp: Potential Yield, Ys: Stress Su sceptibilit $747.3$ $1.552$ $76.$ Yp: Potential Yield, Ys: Stress Su sceptibilit $747.3$ $1.552$ $76.$ Yp: Potential Yield, Ys: Stress Su sceptibilit $747.3$ $1.552$ $76.$ Yp: Susceptibility Percentage Index. $717.3$ $1.552$ $76.$ |                | 91.4<br>52.6<br>259.2<br>126.4<br>54.4<br>54.4<br>28.9<br>134.6<br>121.7<br>248.7<br>248.7<br>248.7<br>248.7<br>210.1<br>142.4<br>134.7<br>210.1<br>142.4<br>134.7<br>210.1<br>142.4<br>italia (Stabili) | 367.5<br>365.6<br>618.8<br>426.6<br>520.4<br>644.4<br>399.9<br>543.5<br>716.9<br>543.5<br>716.9<br>533.9<br>543.6<br>593.9<br>767.1<br>ress To lera<br>ity Index, I | 91.4       367.5       361.9         52.6       365.6       363.7         59.2       618.8       591.6         26.4       426.6       417.2         26.4       520.4       519.0         54.4       520.4       519.0         28.9       644.4       644.1         46.2       399.9       386.5         34.6       543.5       535.2         34.6       543.5       535.2         34.7       582.6       511.7         42.4       716.9       711.7         48.7       582.6       556.1         10.1       593.9       575.3         42.4       767.1       760.5         34.7       545.6       535.2         34.7       545.6       535.2         34.7       545.6       556.1         10.1       593.9       575.3         34.7       545.6       535.2         STI: Stress To lerance Index,       1         Stability Index, DI: Drought       535.2 | 0.998<br>1.110<br>0.838<br>0.951<br>1.154<br>1.154<br>1.154<br>1.154<br>1.154<br>0.885<br>0.999<br>0.885<br>0.999<br>1.081<br>0.831<br>0.831<br>0.896<br>1.064<br>1.003<br>1.003<br>t Resistance | 0.673<br>0.709<br>1.023<br>0.760<br>1.031<br>1.031<br>1.031<br>0.966<br>1.372<br>0.968<br>1.372<br>0.958<br>1.372<br>0.958<br>1.455<br>1.022<br>1.455<br>1.022<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.966<br>0.760<br>0.760<br>0.760<br>0.760<br>0.760<br>0.760<br>0.760<br>0.760<br>0.760<br>0.760<br>0.760<br>1.023<br>0.760<br>0.760<br>0.760<br>0.760<br>0.760<br>1.023<br>0.760<br>0.760<br>0.760<br>0.760<br>0.760<br>0.760<br>0.760<br>0.760<br>0.760<br>0.760<br>0.760<br>0.760<br>0.760<br>0.760<br>0.760<br>0.760<br>0.760<br>0.760<br>0.760<br>0.760<br>0.760<br>0.760<br>0.760<br>0.760<br>0.760<br>0.760<br>0.760<br>0.760<br>0.760<br>0.760<br>0.760<br>0.966<br>0.760<br>0.966<br>0.760<br>0.966<br>0.760<br>0.966<br>0.760<br>0.966<br>0.760<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.9666<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966<br>0.966 | 0.779<br>0.866<br>0.654<br>0.742<br>0.901<br>0.956<br>0.691<br>0.780<br>0.691<br>0.648<br>0.648<br>0.699<br>0.844<br>0.699<br>0.830<br>0.830<br>0.782<br>11: Abiotic <sup>7</sup> | 0.524<br>0.614<br>0.669<br>0.564<br>0.929<br>1.259<br>0.472<br>0.472<br>0.472<br>0.472<br>0.776<br>1.157<br>0.776<br>1.157<br>0.776<br>1.157<br>0.776<br>1.157<br>0.776<br>1.157<br>0.715<br>1.208<br>0.715<br>1.208<br>0.715<br>1.208<br>0.715<br>1.208<br>0.715<br>0.715<br>0.715<br>0.715<br>0.715<br>0.715<br>0.715<br>0.715<br>0.715<br>0.715<br>0.715<br>0.715<br>0.715<br>0.715<br>0.715<br>0.715<br>0.715<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.756<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.776<br>0.7776<br>0.7157<br>0.776<br>0.7157<br>0.776<br>0.776<br>0.7776<br>0.7776<br>0.7776<br>0.7776<br>0.7775<br>0.7776<br>0.7775<br>0.7776<br>0.7776<br>0.7776<br>0.7776<br>0.7776<br>0.7776<br>0.7775<br>0.7776<br>0.7775<br>0.7776<br>0.7776<br>0.7776<br>0.7776<br>0.7776<br>0.7776<br>0.7776<br>0.7776<br>0.7776<br>0.7776<br>0.7776<br>0.7776<br>0.7776<br>0.7776<br>0.7776<br>0.7776<br>0.7776<br>0.7776<br>0.7776<br>0.7776<br>0.7776<br>0.7776<br>0.7776<br>0.7776<br>0.7776<br>0.7776<br>0.7776<br>0.7776<br>0.7776<br>0.7776<br>0.7776<br>0.7776<br>0.7776<br>0.7776<br>0.7776<br>0.7776<br>0.7776<br>0.7776<br>0.7776<br>0.7776<br>0.7776<br>0.7776<br>0.7776<br>0.7776<br>0.7776<br>0.7776<br>0.7776<br>0.7776<br>0.7776<br>0.7776<br>0.7776<br>0.7776<br>0.7776<br>0.7776<br>0.7776<br>0.7776<br>0.7776<br>0.7776<br>0.7777<br>0.7777<br>0.7777<br>0.7777<br>0.7777<br>0.7777<br>0.7777<br>0.7777<br>0.7777<br>0.77777<br>0.77777<br>0.77777777                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 17       91.4       367.5       361.9       0.998       0.673       0.779       0.524       25994.4       7.5         17       52.6       365.6       363.7       1.110       0.709       0.866       0.614       14971.6       4.3         19       126.4       426.6       417.2       0.951       0.760       0.742       0.564       41616.6       10.3         10       54.4       520.4       519.0       1.154       1.031       0.901       0.929       22072.4       4.4         13       54.4       520.4       519.0       1.154       1.031       0.901       0.929       22072.4       4.4         13       28.9       644.1       1.225       1.317       0.956       1.4523.3       2.4         146.2       399.9       386.5       0.885       0.683       0.601       0.472       44837.9       11.9         23       134.6       543.5       535.2       0.999       0.9780       0.776       56629.9       11.0         3       121.7       716.9       711.7       1.081       1.372       0.844       1.157       67811.5       9.9         21       210.1       533.9       0.6 | 7.5<br>4.3<br>21.1<br>10.3<br>4.4<br>2.4<br>11.9<br>11.0<br>9.9<br>9.9<br>20.3<br>17.1<br>11.6<br>11.0<br>8.9<br>SPI: Stress     |
|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| Afzal<br>Jonub<br>Reihan<br>Zarjo<br>Sahra<br>Sahra<br>Karoun                   | 391.9<br>748.4<br>489.8<br>547.7<br>658.9<br>472.9<br>610.8<br>777.7<br>707.0<br>699.0<br>838.3<br>699.0<br>838.3<br>613.0<br>613.0<br>S21CH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 339.3<br>389.2<br>489.2<br>36.3.4<br>493.2<br>630.0<br>326.8<br>476.2<br>656.1<br>478.3<br>488.9<br>695.9<br>695.9<br>695.9<br>695.9<br>tive Droug<br>e Index. | 0.611<br>1.576<br>1.175<br>0.452<br>0.452<br>0.200<br>1.407<br>1.003<br>0.712<br>1.601<br>1.368<br>0.773<br>0.773<br>0.990<br><u>0.773</u><br>0.990<br><u>0.773</u><br><u>0.990</u>           | 0.354<br>0.974<br>0.474<br>0.719<br>1.105<br>0.411<br>0.774<br>1.358<br>0.862<br>0.909<br>1.552<br>0.909<br>1.552<br>0.909<br>1.552<br>0.909<br>1.552<br>T: Yield In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                | 52.6<br>259.2<br>126.4<br>54.4<br>54.4<br>28.9<br>134.6<br>121.7<br>248.7<br>248.7<br>248.7<br>210.1<br>146.2<br>121.7<br>248.7<br>210.1<br>142.4<br>142.4<br>142.4<br>142.4<br>iteld Stabili            | 365.6<br>618.8<br>620.4<br>644.4<br>399.9<br>543.5<br>716.9<br>543.5<br>716.9<br>533.9<br>767.1<br>ress To ler:<br>ity Index, 1                                     | 363.7<br>591.6<br>519.0<br>644.1<br>386.5<br>535.2<br>711.7<br>535.2<br>711.7<br>535.3<br>760.5<br>535.3<br>760.5<br>DI: Drough                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.110<br>0.838<br>0.951<br>1.154<br>1.225<br>0.885<br>0.885<br>0.885<br>0.999<br>1.081<br>0.896<br>1.081<br>0.896<br>1.064<br>1.064<br>1.003<br>t Resistance                                     | 0.709<br>1.023<br>0.760<br>1.031<br>1.317<br>0.683<br>0.996<br>1.372<br>0.958<br>1.372<br>0.958<br>1.372<br>0.958<br>1.455<br>1.022<br>1.455<br>1.000<br>e Index, AT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.866<br>0.654<br>0.742<br>0.901<br>0.956<br>0.691<br>0.780<br>0.699<br>0.844<br>0.648<br>0.699<br>0.830<br>0.830<br>0.830<br>0.782<br>11: Abiotic                                | 0.614<br>0.669<br>0.564<br>0.929<br>1.259<br>0.472<br>0.472<br>0.472<br>0.776<br>1.157<br>0.776<br>1.157<br>0.776<br>1.157<br>0.715<br>1.208<br>0.715<br>1.208<br>0.792<br>0.792<br>0.792<br>D.792                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 14971.6<br>122345.1<br>41616.6<br>22072.4<br>14523.3<br>44837.9<br>56629.9<br>67811.5<br>110443.1<br>95843.6<br>84874.6<br>58497.0<br>58497.0<br>58497.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.3<br>21.1<br>10.3<br>4.4<br>2.4<br>11.9<br>11.0<br>9.9<br>9.9<br>9.9<br>9.9<br>17.1<br>11.6<br>11.0<br>MP: Mean<br>SPI: Stress |
| Jonub<br>Reihan<br>Zarjo<br>Sararud<br>Sahra<br>Fajr-30<br>Karoun               | 748.4<br>489.8<br>547.7<br>658.9<br>472.9<br>610.8<br>777.7<br>707.0<br>699.0<br>838.3<br>699.0<br>838.3<br>613.0<br>613.0<br>Corrented Relation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 489.2<br>363.4<br>493.2<br>630.0<br>326.8<br>476.2<br>656.1<br>478.3<br>488.9<br>695.9<br>695.9<br>478.3<br>: Stress Yi<br>tive Droug<br>e Index.              | $\begin{array}{c} 1.576\\ 1.175\\ 0.452\\ 0.200\\ 1.407\\ 1.003\\ 0.712\\ 1.003\\ 0.712\\ 1.368\\ 0.773\\ 0.990\\ \hline 0.990\\ \hline 0.990\\ \hline \end{array}$                           | 0.974<br>0.474<br>0.719<br>1.105<br>0.411<br>0.774<br>1.358<br>0.862<br>0.909<br>1.552<br>0.909<br>1.552<br>0.909<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                | 259.2<br>126.4<br>54.4<br>54.4<br>28.9<br>146.2<br>134.6<br>121.7<br>248.7<br>248.7<br>210.1<br>142.4<br>142.4<br>142.4<br>142.4<br>142.4<br>142.4<br>142.4<br>itali<br>itali<br>stati<br>teld Stabili   | 618.8<br>426.6<br>520.4<br>644.4<br>399.9<br>543.5<br>716.9<br>582.6<br>593.9<br>767.1<br>ress To ler:<br>ity Index, 1                                              | 591.6<br>417.2<br>519.0<br>644.1<br>386.5<br>535.2<br>711.7<br>535.1<br>760.5<br>535.3<br>760.5<br>535.3<br>760.5<br>DI: Drough                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.838<br>0.951<br>1.154<br>1.225<br>0.885<br>0.885<br>0.885<br>0.885<br>0.885<br>0.896<br>1.081<br>0.831<br>0.896<br>1.064<br>1.064<br>1.003<br>t Resistance                                     | 1.023<br>0.760<br>1.031<br>1.317<br>0.683<br>0.966<br>1.372<br>0.958<br>1.372<br>0.958<br>1.022<br>1.455<br>1.020<br>0.958<br>1.455<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.958<br>0.0760<br>0.0760<br>0.0760<br>0.760                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.654<br>0.742<br>0.901<br>0.956<br>0.691<br>0.780<br>0.648<br>0.648<br>0.648<br>0.699<br>0.830<br>0.830<br>0.782<br>an Producti<br>II: Abiotic                                   | 0.669<br>0.564<br>0.929<br>1.259<br>0.472<br>0.472<br>0.472<br>0.776<br>1.157<br>0.621<br>0.715<br>1.208<br>0.715<br>0.715<br>0.715<br>0.715<br>0.715<br>0.715<br>0.715<br>0.715<br>0.715<br>0.715<br>0.715<br>0.702<br>0.702<br>0.715<br>0.715<br>0.715<br>0.715<br>0.715<br>0.715<br>0.715<br>0.715<br>0.715<br>0.715<br>0.715<br>0.715<br>0.715<br>0.715<br>0.715<br>0.715<br>0.715<br>0.715<br>0.715<br>0.715<br>0.715<br>0.715<br>0.715<br>0.715<br>0.715<br>0.715<br>0.715<br>0.715<br>0.715<br>0.715<br>0.715<br>0.715<br>0.715<br>0.715<br>0.715<br>0.715<br>0.715<br>0.715<br>0.715<br>0.715<br>0.715<br>0.715<br>0.715<br>0.715<br>0.715<br>0.715<br>0.715<br>0.715<br>0.715<br>0.715<br>0.715<br>0.715<br>0.715<br>0.715<br>0.715<br>0.715<br>0.715<br>0.715<br>0.715<br>0.715<br>0.715<br>0.715<br>0.715<br>0.715<br>0.715<br>0.715<br>0.715<br>0.715<br>0.715<br>0.7715<br>0.7715<br>0.7715<br>0.7715<br>0.7715<br>0.7715<br>0.7715<br>0.7715<br>0.7715<br>0.7715<br>0.7715<br>0.7715<br>0.7715<br>0.7715<br>0.7715<br>0.7715<br>0.7715<br>0.7715<br>0.7715<br>0.7715<br>0.7715<br>0.7715<br>0.7715<br>0.7715<br>0.7715<br>0.7715<br>0.7715<br>0.7715<br>0.7715<br>0.7715<br>0.7715<br>0.7715<br>0.7715<br>0.7715<br>0.7715<br>0.7715<br>0.7715<br>0.7715<br>0.7715<br>0.7715<br>0.7715<br>0.7715<br>0.7715<br>0.7715<br>0.7715<br>0.7715<br>0.7715<br>0.7715<br>0.7715<br>0.7715<br>0.7715<br>0.7715<br>0.7715<br>0.7715<br>0.7715<br>0.7715<br>0.7715<br>0.7715<br>0.7715<br>0.7715<br>0.7715<br>0.7715<br>0.7715<br>0.7715<br>0.7715<br>0.7715<br>0.7715<br>0.7715<br>0.7715<br>0.7715<br>0.7715<br>0.7715<br>0.7715<br>0.7715<br>0.7715<br>0.7715<br>0.7715<br>0.7715<br>0.7715<br>0.7715<br>0.7715<br>0.7715<br>0.7715<br>0.7715<br>0.7715<br>0.7715<br>0.7715<br>0.7715<br>0.7715<br>0.7715<br>0.7715<br>0.7715<br>0.7715<br>0.7715<br>0.7715<br>0.7715<br>0.7715<br>0.7715<br>0.7715<br>0.7715<br>0.7715<br>0.7715<br>0.7715<br>0.7715<br>0.7715<br>0.7715<br>0.7715<br>0.7715<br>0.7715<br>0.7715<br>0.7715<br>0.7715<br>0.7715<br>0.7715<br>0.7715<br>0.7715<br>0.7715<br>0.7715<br>0.7715<br>0.7715<br>0.7715<br>0.7715<br>0.7715<br>0.7715<br>0.7715<br>0.7750<br>0.7715<br>0.7750<br>0.7750<br>0.7750<br>0.7750<br>0.7750<br>0.7750<br>0.7750<br>0.7750<br>0.7750<br>0.7750<br>0.7750<br>0.7750<br>0.7750<br>0.7750<br>0.7750<br>0.7750<br>0.7750<br>0.7750<br>0.7750<br>0.7750<br>0.7750<br>0.7750<br>0.7750<br>0.7750<br>0.7750<br>0.7750<br>0.7750<br>0.7750<br>0.7750<br>0.7750<br>0.7750<br>0.7750<br>0.7750<br>0.7750<br>0.7750<br>0.77500<br>0.77500<br>0.77500<br>0.77500<br>0.7750000000000 | 122345.1<br>41616.6<br>22072.4<br>14523.3<br>44837.9<br>56629.9<br>67811.5<br>110443.1<br>95843.6<br>84874.6<br>58497.0<br>58497.0<br>i To lerance,<br>Index and S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 21.1<br>10.3<br>4.4<br>2.4<br>11.9<br>11.0<br>9.9<br>9.9<br>9.9<br>9.9<br>17.1<br>11.6<br>11.0<br>MP: Mean<br>SPI: Stress        |
| Reihan<br>Zarjo<br>Sararud<br>Sahra<br>Fajr-30<br>Karoun                        | 489.8<br>547.7<br>658.9<br>472.9<br>610.8<br>777.7<br>707.0<br>699.0<br>838.3<br>699.0<br>838.3<br>613.0<br>613.0<br>613.0<br>Child, Ys<br>CDI: Rela                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 363.4<br>493.2<br>630.0<br>326.8<br>476.2<br>656.1<br>458.3<br>488.9<br>695.9<br>695.9<br>478.3<br>: Stress Yi<br>tive Droug<br>e Index.                       | $\begin{array}{c} 1.175\\ 0.452\\ 0.200\\ 1.407\\ 1.003\\ 0.712\\ 1.003\\ 0.712\\ 1.368\\ 0.773\\ 0.990\\ \hline 0.990\\ \hline 0.990\\ \hline \end{array}$                                   | 0.474<br>0.719<br>1.105<br>0.411<br>0.774<br>1.358<br>0.862<br>0.909<br>1.552<br>0.909<br>1.552<br>0.909<br>1.552<br>1.552<br>0.821<br>T: Yield In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                | 126.4<br>54.4<br>28.9<br>146.2<br>134.6<br>121.7<br>248.7<br>248.7<br>210.1<br>142.4<br>142.4<br>142.4<br>134.7<br>ield Stabili                                                                          | 426.6<br>520.4<br>644.4<br>399.9<br>543.5<br>716.9<br>582.6<br>593.9<br>767.1<br>545.6<br>ress To lers<br>ity Index, 1                                              | 417.2<br>519.0<br>644.1<br>386.5<br>535.2<br>711.7<br>535.1<br>711.7<br>535.3<br>760.5<br>535.3<br>760.5<br>535.2<br>711.7<br>535.3<br>DI: Drough                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.951<br>1.154<br>1.225<br>0.885<br>0.885<br>0.999<br>1.081<br>0.896<br>1.064<br>1.064<br>1.064<br>1.003<br>GMP: Geo                                                                             | 0.760<br>1.031<br>1.317<br>0.683<br>0.996<br>1.372<br>0.958<br>1.372<br>0.958<br>1.022<br>1.455<br>1.022<br>1.455<br>1.000<br>e Index, AT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.742<br>0.901<br>0.956<br>0.691<br>0.780<br>0.844<br>0.648<br>0.648<br>0.699<br>0.830<br>0.830<br>0.782<br>an Producti<br>II: Abiotic                                            | 0.564<br>0.929<br>1.259<br>0.472<br>0.472<br>0.776<br>1.157<br>0.776<br>1.157<br>0.715<br>1.208<br>0.715<br>1.208<br>0.715<br>0.792<br>Vity, TOL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 41616.6<br>22072.4<br>14523.3<br>44837.9<br>56629.9<br>67811.5<br>110443.1<br>95843.6<br>84874.6<br>58497.0<br>58497.0<br>58497.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10.3<br>4.4<br>2.4<br>11.9<br>11.0<br>9.9<br>9.9<br>9.9<br>20.3<br>17.1<br>11.0<br>11.0<br>MP: Mean<br>SPI: Stress               |
| Zarjo<br>Sararud<br>Sahra<br>Fajr-30<br>Karoun                                  | 547.7<br>658.9<br>472.9<br>610.8<br>777.7<br>707.0<br>699.0<br>838.3<br>613.0<br>613.0<br>613.0<br>Chield, Ys<br>CDI: Rela                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 493.2<br>630.0<br>326.8<br>476.2<br>656.1<br>458.3<br>488.9<br>695.9<br>478.3<br>; Stress Yi<br>tive Droug<br>e Index.                                         | $\begin{array}{c} 0.452 \\ 0.200 \\ 1.407 \\ 1.003 \\ 0.712 \\ 1.003 \\ 0.712 \\ 1.368 \\ 0.773 \\ 0.990 \\ \hline 0.990 \\ \hline 0.900 \\ \hline \end{array}$                               | 0.719<br>1.105<br>0.411<br>0.774<br>1.358<br>0.862<br>0.909<br>1.552<br>0.909<br>1.552<br>0.821<br>Tress Su see<br>T. Yield In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                | 54.4<br>28.9<br>146.2<br>134.6<br>121.7<br>248.7<br>248.7<br>210.1<br>142.4<br>134.7<br>ield Stabili                                                                                                     | 520.4<br>644.4<br>399.9<br>543.5<br>716.9<br>582.6<br>593.9<br>767.1<br>545.6<br>ress To lers<br>ity Index, 1                                                       | 519.0<br>644.1<br>386.5<br>535.2<br>711.7<br>535.1<br>575.3<br>760.5<br>535.2<br>760.5<br>335.2<br>DI: Drough                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.154<br>1.225<br>0.885<br>0.999<br>1.081<br>0.896<br>1.064<br>1.064<br>1.064<br>1.003<br>GMP: Geo                                                                                               | 1.031<br>1.317<br>0.683<br>0.996<br>1.372<br>0.958<br>1.372<br>0.958<br>1.022<br>1.455<br>1.020<br>0.958<br>1.022<br>1.455<br>1.000<br>e Index, AT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.901<br>0.956<br>0.691<br>0.780<br>0.844<br>0.648<br>0.699<br>0.830<br>0.830<br>0.782<br>0.782<br>11: Abiotic                                                                    | 0.929<br>1.259<br>0.472<br>0.776<br>1.157<br>0.775<br>1.157<br>0.715<br>1.208<br>0.715<br>1.208<br>0.792<br>Vity, TOL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 22072.4<br>14523.3<br>44837.9<br>56629.9<br>67811.5<br>110443.1<br>95843.6<br>84874.6<br>58497.0<br>58497.0<br>58497.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.4<br>2.4<br>11.9<br>11.0<br>9.9<br>9.9<br>20.3<br>17.1<br>11.0<br><u>11.0</u><br><u>MP: Mean</u><br>SPI: Stress                |
| Sararud<br>Sahra<br>Fajr-30<br>Karoun                                           | 658.9<br>472.9<br>610.8<br>777.7<br>707.0<br>699.0<br>838.3<br>613.0<br>613.0<br>613.0<br>CDI: Rela                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 630.0<br>326.8<br>476.2<br>656.1<br>458.3<br>488.9<br>695.9<br>695.9<br>478.3<br>: Stress Yi<br>tive Droug<br>e Index.                                         | 0.200<br>1.407<br>1.003<br>0.712<br>1.001<br>1.368<br>0.773<br>0.773<br>0.990<br>0.990<br>iht Index, Y                                                                                        | 1.105<br>0.411<br>0.774<br>1.358<br>0.862<br>0.909<br>1.552<br>0.909<br>1.552<br>0.821<br>tress Su see<br>T1. Yield In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                | 28.9<br>146.2<br>134.6<br>121.7<br>248.7<br>248.7<br>210.1<br>142.4<br>142.4<br>134.7<br>ex, STI: St<br>ield Stabili                                                                                     | 644.4<br>399.9<br>543.5<br>716.9<br>582.6<br>582.6<br>593.9<br>767.1<br>545.6<br>ress To lers<br>ity Index, I                                                       | 644.1<br>386.5<br>535.2<br>711.7<br>556.1<br>556.1<br>575.3<br>760.5<br>535.2<br>ance Index,<br>DI: Drough <sup>1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.225<br>0.885<br>0.999<br>1.081<br>0.831<br>0.836<br>1.064<br>1.064<br>1.003<br>GMP: Geo                                                                                                        | 1.317<br>0.683<br>0.996<br>1.372<br>0.958<br>1.372<br>0.958<br>1.022<br>1.455<br>1.455<br>1.455<br>1.000<br>e Index, AT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.956<br>0.691<br>0.780<br>0.844<br>0.648<br>0.648<br>0.699<br>0.830<br>0.782<br>an Producti                                                                                      | 1.259<br>0.472<br>0.776<br>1.157<br>0.621<br>0.715<br>1.208<br>0.715<br>1.208<br>0.792<br>Vity, TOL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14523.3<br>44837.9<br>56629.9<br>67811.5<br>110443.1<br>95843.6<br>84874.6<br>58497.0<br>58497.0<br>58497.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.4<br>11.9<br>11.0<br>9.9<br>20.3<br>17.1<br>11.6<br><u>11.0</u><br><u>MP: Mean</u><br>SPI: Stress                              |
| Sahra<br>Fajr-30<br>Karoun                                                      | 472.9<br>610.8<br>777.7<br>707.0<br>699.0<br>838.3<br>699.0<br>838.3<br>613.0<br>613.0<br>613.0<br>CDI: Rela                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 326.8<br>476.2<br>656.1<br>458.3<br>488.9<br>695.9<br>695.9<br>478.3<br>x: Stress Yi<br>tive Droug<br>e Index.                                                 | 1.407<br>1.003<br>0.712<br>1.601<br>1.368<br>0.773<br>0.990<br>0.990<br>eld, SSI: S                                                                                                           | 0.411<br>0.774<br>1.358<br>0.862<br>0.909<br>1.552<br>0.821<br>tress Su sce<br>TT: Yield In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                | 146.2<br>134.6<br>121.7<br>248.7<br>248.7<br>210.1<br>142.4<br>134.7<br>ield Stabili<br>ield Stabili                                                                                                     | 399.9<br>543.5<br>716.9<br>582.6<br>593.9<br>767.1<br>545.6<br>ress To lers<br>ity Index, I                                                                         | 386.5<br>535.2<br>711.7<br>556.1<br>575.3<br>760.5<br>535.2<br>ance Index,<br>DI: Drough                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.885<br>0.999<br>1.081<br>0.831<br>0.831<br>0.896<br>1.064<br>1.003<br>GMP: Geo                                                                                                                 | 0.683<br>0.996<br>1.372<br>0.958<br>1.022<br>1.455<br>1.455<br>1.455<br>1.455<br>0.000<br>e Index, AT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.691<br>0.780<br>0.844<br>0.648<br>0.699<br>0.830<br>0.782<br>an Producti                                                                                                        | 0.472<br>0.776<br>1.157<br>0.621<br>0.715<br>1.208<br>0.792<br>0.792<br>vity, TOL<br>Tolerance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 44837.9<br>56629.9<br>67811.5<br>110443.1<br>95843.6<br>84874.6<br>58497.0<br>58497.0<br>58497.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11.9<br>11.0<br>9.9<br>20.3<br>17.1<br>17.1<br>11.6<br>MP: Mean<br>SPI: Stress                                                   |
| Fajr-30<br>Karoun                                                               | 610.8<br>777.7<br>707.0<br>699.0<br>838.3<br>613.0<br>Vield, Ys<br>XDI: Rela<br>Percentag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 476.2<br>656.1<br>458.3<br>458.9<br>695.9<br>695.9<br>478.3<br>x: Stress Yi<br>tive Droug<br>e Index.                                                          | 1.003<br>0.712<br>1.601<br>1.368<br>0.773<br>0.990<br>eld, SSI: S                                                                                                                             | 0.774<br>1.358<br>0.862<br>0.909<br>1.552<br>0.821<br>tress Su sce<br>T: Yield In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                | 134.6<br>121.7<br>248.7<br>210.1<br>142.4<br>142.4<br>134.7<br>ex, STI: St<br>ield Stabili                                                                                                               | 543.5<br>716.9<br>582.6<br>593.9<br>767.1<br>545.6<br>ress To lers<br>ity Index, I                                                                                  | 535.2<br>711.7<br>556.1<br>575.3<br>760.5<br>535.2<br>ance Index,<br>DI: Drough!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.999<br>1.081<br>0.831<br>0.896<br>1.064<br>1.003<br>GMP: Geo                                                                                                                                   | 0.996<br>1.372<br>0.958<br>1.022<br>1.455<br>1.455<br>1.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.780<br>0.844<br>0.648<br>0.699<br>0.830<br>0.782<br>an Producti                                                                                                                 | 0.776<br>1.157<br>0.621<br>0.715<br>1.208<br>0.792<br>vity, TOL<br>Tolerance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 56629.9<br>67811.5<br>110443.1<br>95843.6<br>84874.6<br>58497.0<br>58497.0<br>58497.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11.0<br>9.9<br>20.3<br>17.1<br>17.1<br>11.6<br><u>11.6</u><br><u>MP: Mean</u><br>SPI: Stress                                     |
| Karoun                                                                          | 777.7<br>707.0<br>699.0<br>838.3<br>613.0<br>Vield, Ys<br>XDI: Rela<br>Percentag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 656.1<br>458.3<br>488.9<br>695.9<br>478.3<br>:: Stress Yi<br>tive Droug<br>e Index.                                                                            | 0.712<br>1.601<br>1.368<br>0.773<br>0.990<br>eld, SSI: Si,<br>tht Index, Y                                                                                                                    | 1.358<br>0.862<br>0.909<br>1.552<br>0.821<br>tress Su sce <sup>-</sup><br>T: Yield In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | 121.7<br>248.7<br>210.1<br>142.4<br>134.7<br>ex, STI: St<br>ield Stabili                                                                                                                                 | 716.9<br>582.6<br>593.9<br>767.1<br>545.6<br>tress To lers<br>ity Index, I                                                                                          | 711.7<br>556.1<br>575.3<br>760.5<br>535.2<br>ance Index,<br>DI: Drough!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.081<br>0.831<br>0.896<br>1.064<br>1.003<br>GMP: Geo<br>t Resistance                                                                                                                            | 1.372<br>0.958<br>1.022<br>1.455<br>1.455<br>1.000<br>e Index, AT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.844<br>0.648<br>0.699<br>0.830<br>0.782<br>an Producti<br>II: Abiotic                                                                                                           | 1.157<br>0.621<br>0.715<br>1.208<br>0.792<br>0.792<br>vity, TOL<br>Tolerance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 67811.5<br>110443.1<br>95843.6<br>84874.6<br>58497.0<br>58497.0<br>i: To lerance,<br>Index and S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.9<br>20.3<br>17.1<br>11.6<br>11.6<br>MP: Mean<br>SPI: Stress                                                                   |
|                                                                                 | 707.0<br>699.0<br>838.3<br>613.0<br>Yield, Ys<br>tDI: Rela<br>Percentag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 458.3<br>488.9<br>695.9<br>478.3<br>478.3<br>i: Stress Yi<br>tive Droug<br>e Index.                                                                            | 1.601<br>1.368<br>0.773<br>0.990<br>eld, SSI: Si,<br>ht Index, Y                                                                                                                              | 0.862<br>0.909<br>1.552<br>0.821<br>Iress Su sce<br>T: Yield In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                | 248.7<br>210.1<br>142.4<br>134.7<br>ex, STI: St<br>ield Stabili                                                                                                                                          | 582.6<br>593.9<br>767.1<br>545.6<br>ity Index, I                                                                                                                    | 556.1<br>575.3<br>760.5<br>535.2<br>ance Index,<br>DI: Drough!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.831<br>0.896<br>1.064<br>1.003<br>GMP: Geo<br>t Resistance                                                                                                                                     | 0.958<br>1.022<br>1.455<br>1.455<br>1.000<br>metric Met                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.648<br>0.699<br>0.830<br>0.782<br>an Producti                                                                                                                                   | 0.621<br>0.715<br>1.208<br>0.792<br>vity, TOL<br>Tolerance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 110443.1<br>95843.6<br>84874.6<br>58497.0<br>58497.0<br>Index and S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20.3<br>17.1<br>11.6<br>11.0<br>MP: Mean<br>SPI: Stress                                                                          |
| Gorgan-4                                                                        | 699.0<br>838.3<br>613.0<br>Yield, Ys<br>VDI: Rela<br>Percentag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 488.9<br>695.9<br>478.3<br>:: Stress Yi,<br>tive Droug<br>e Index.                                                                                             | 1.368<br>0.773<br>0.990<br>eld, SSI: Si<br>,ht Index, Y                                                                                                                                       | 0.909<br><u>1.552</u><br><u>0.821</u><br>T: Yield In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                | 210.1<br>142.4<br>134.7<br>ex, STI: St<br>ield Stabili                                                                                                                                                   | 593.9<br>767.1<br>545.6<br>ress To ler;<br>ity Index, I                                                                                                             | 575.3<br>760.5<br>535.2<br>ance Index,<br>DI: Drought                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.896<br>1.064<br>1.003<br>GMP: Geo<br>t Resistance                                                                                                                                              | 1.022<br>1.455<br>1.000<br>i metric Mec<br>e Index, AT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.699<br>0.830<br>0.782<br>an Producti<br>II: Abiotic                                                                                                                             | 0.715<br>1.208<br>0.792<br>vity, TOL<br>Tolerance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 95843.6<br>84874.6<br>58497.0<br>: To lerance,<br>Index and S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 17.1<br>11.6<br>11.0<br>MP: Mean<br>SPI: Stress                                                                                  |
| Makuei                                                                          | 838.3<br>613.0<br>Vield, Ys<br>VDI: Rela<br>Percentag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 695.9<br>478.3<br>:: Stress Yi<br>tive Droug<br>e Index.                                                                                                       | 0.773<br>0.990<br>eld, SSI: Si<br>ht Index, Y                                                                                                                                                 | 1.552<br>0.821<br>tress Su sce<br>T: Yield In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                | 142.4<br>134.7<br>ex, STI: St<br>ield Stabili                                                                                                                                                            | 767.1<br>545.6<br>ress To lers<br>ity Index, I                                                                                                                      | 760.5<br>535.2<br>ance Index,<br>DI: Drough                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.064<br>1.003<br>GMP: Geo<br>t Resistance                                                                                                                                                       | 1.455<br>1.000<br>metric Mes<br>e Index, AT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.830<br>0.782<br>an Producti<br>II: Abiotic                                                                                                                                      | 1.208<br>0.792<br>vity, TOL<br>Tolerance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 84874.6<br>58497.0<br>: To lerance,<br>Index and S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11.6<br>11.0<br>MP: Mean<br>SPI: Stress                                                                                          |
| Nosrat                                                                          | 613.0<br>Yield, Ys<br>tDI: Rela<br>Percentag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 478.3<br>:: Stress Yiu<br>tive Droug<br>e Index.                                                                                                               | 0.990<br>eld, SSI: Si<br>ht Index, Y                                                                                                                                                          | 0.821<br>Iress Su sce<br>T: Yield In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                | 134.7<br>ex, STI: St<br>ield Stabili                                                                                                                                                                     | 545.6<br>ress To lera<br>ity Index, I                                                                                                                               | 535.2<br>ance Index,<br>DI: Drought                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.003<br>GMP: Geo<br>t Resistance                                                                                                                                                                | 1.000<br>metric Mea<br>e Index, AT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.782<br>an Producti<br>II: Abiotic                                                                                                                                               | 0.792<br>vity, TOL<br>Tolerance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 58497.0<br>: To lerance,<br>Index and S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11.0<br>MP: Mean<br>SPI: Stress                                                                                                  |
| Mean                                                                            | Yield, Ys<br>tDI: Rela<br>Percentag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | : Stress Yi<br>tive Droug<br>e Index.                                                                                                                          | eld, SSI: St<br>ht Index, Y                                                                                                                                                                   | rress Su sce<br>T: Yield In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                | ex, STI: St<br>ield Stabili                                                                                                                                                                              | ress To lera<br>ity Index, I                                                                                                                                        | ance Index,<br>DI: Drought                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | GMP: Geo<br>t Resistance                                                                                                                                                                         | e Index, AT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | an Producti<br>II: Abiotic                                                                                                                                                        | vity, TOL<br>Tolerance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | : To lerance,<br>Index and S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MP: Mear<br>SPI: Stress                                                                                                          |
|                                                                                 | Yp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ys                                                                                                                                                             | ISS                                                                                                                                                                                           | STI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | GMP            | TOL                                                                                                                                                                                                      | MP                                                                                                                                                                  | Yp Ys SSI STI GMP TOL MP Harm RDI YI YSI DI ATI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RDI                                                                                                                                                                                              | ΥI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ISY                                                                                                                                                                               | DI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ATI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | IdSS                                                                                                                             |
|                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ,                                                                                                                                                              |                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |                                                                                                                                                                                                          |                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                  |
|                                                                                 | 0.87**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                              |                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |                                                                                                                                                                                                          |                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                  |
|                                                                                 | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -0.41                                                                                                                                                          | -                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |                                                                                                                                                                                                          |                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                  |
|                                                                                 | 0.94**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.97**                                                                                                                                                         | -0.20                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |                                                                                                                                                                                                          |                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                  |
|                                                                                 | $0.96^{**}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.97**                                                                                                                                                         | -0.17                                                                                                                                                                                         | 0.99**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1              | ,                                                                                                                                                                                                        |                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                  |
| ٦                                                                               | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -0.01                                                                                                                                                          | 0.90**                                                                                                                                                                                        | 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.24<br>1.00** |                                                                                                                                                                                                          | Ŧ                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                  |
|                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                | -0.14                                                                                                                                                                                         | **00.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.00**         | 17.0                                                                                                                                                                                                     | 1<br>1 00**                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                  |
| Harm (                                                                          | 010<br>010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.45**                                                                                                                                                         | -0.21<br>1 00**                                                                                                                                                                               | 1.90 °                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.00**         | 0.21                                                                                                                                                                                                     | 1.00**                                                                                                                                                              | 1001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                  |
|                                                                                 | -0.10<br>0 87**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.71<br>1 00**                                                                                                                                                 | -1.00                                                                                                                                                                                         | 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.17           | -0.01                                                                                                                                                                                                    | 0.06**                                                                                                                                                              | 0.02**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.41                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                  |
| Ļ                                                                               | -0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.41                                                                                                                                                           | -1.00**                                                                                                                                                                                       | 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.17           | -0.90**                                                                                                                                                                                                  | 0.14                                                                                                                                                                | 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.71<br>1 00**                                                                                                                                                                                   | 1<br>0 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                  |
|                                                                                 | $0.64^{*}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0.94^{**}$                                                                                                                                                    | -0.69*                                                                                                                                                                                        | $0.84^{**}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.83 **        | -0.34                                                                                                                                                                                                    | $0.81^{**}$                                                                                                                                                         | $0.85^{**}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $0.69^{*}$                                                                                                                                                                                       | $0.94^{**}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $0.69^{*}$                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                  |
| ATI C                                                                           | 0.73**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.29                                                                                                                                                           | 0.73**                                                                                                                                                                                        | 0.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.51           | 0.95**                                                                                                                                                                                                   | 0.54                                                                                                                                                                | 0.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -0.73**                                                                                                                                                                                          | 0.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -0.73**                                                                                                                                                                           | -0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                  |
| SSPI (                                                                          | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -0.01                                                                                                                                                          | $0.90^{**}$                                                                                                                                                                                   | 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.24           | $1.00^{**}$                                                                                                                                                                                              | 0.27                                                                                                                                                                | 0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -0.90**                                                                                                                                                                                          | -0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -0.90**                                                                                                                                                                           | -0.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $0.95^{**}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                |

#### 3.3. Cluster analysis

Cluster analysis using cluster analysis with UPGMA and based on drought tolerance criteria (Figure 1), the cultivars classified in three groups. Group 1 (drought tolerance) consisted of Karoun and Nosrat cultivars, group 2 (semi-resistance) included Zarjo, Fajr-30, Gorgan-4, Makuei, Jonub and Sararud

cultivars and group 3 (drought sensitive) discriminated Aras, Afzal, Sahra and Reihan cultivars. As group 1 an 3 showed maximum between group variance, therefore they are recommended for the genetic analysis using diallel or scaling test and QTLs mapping of drought tolerance indices.



**Figure 1.** Dandogram resulted from cluster analysis based on drought tolerance indicators (GMP, MP, Harm, STI, YI and DI). Aras ( $G_1$ ), Afzal ( $G_2$ ), Jonub ( $G_3$ ), Reihan ( $G_4$ ), Zarjo ( $G_5$ ), Sararud ( $G_6$ ), Sahra ( $G_7$ ), Fajr-30 ( $G_8$ ), Karoun ( $G_9$ ), Gorgan-4 ( $G_{10}$ ), Makuei ( $G_{11}$ ) and Nosrat ( $G_{12}$ ).

 Table 6. Correlation coefficients among grain yield and some agronomic traits in barley cultivars under post anthesis water deficiency.

| Parameters | Condition        | Y      | В     | HI   | TKW    | NGPS  | NSPM |
|------------|------------------|--------|-------|------|--------|-------|------|
| Y          | Well water       | 1      |       |      |        |       |      |
|            | Water deficiency | 1      |       |      |        |       |      |
| B          | Well water       | 0.85** | 1     |      |        |       |      |
|            | Water deficiency | 0.92** | 1     |      |        |       |      |
| HI         | Well water       | 0.76** | 0.30  | 1    |        |       |      |
|            | Water deficiency | 0.71*  | 0.38  | 1    |        |       |      |
| TKW        | Well water       | -0.06  | -0.10 | 0.02 | 1      |       |      |
|            | Water deficiency | -0.10  | -0.23 | 0.12 | 1      |       |      |
| NGPS       | Well water       | 0.32   | 0.30  | 0.22 | -0.69* | 1     |      |
|            | Water deficiency | 0.17   | 0.26  | 0.01 | -0.64* | 1     |      |
| NSPM       | Well water       | 0.70*  | 0.64* | 0.47 | 0.14   | -0.29 | 1    |
|            | Water deficiency | 0.71** | 0.67* | 0.48 | -0.02  | -0.37 | 1    |

Y: Grain Yield (g m<sup>-2</sup>), B: Biomass (g m<sup>-2</sup>), HI: Harvest Index (%), TKW: Thousand Grain Weight (g), NGPS: Number of Grain per Spike and NSPM: Number of Spike per m<sup>2</sup>.

\* and \*\*: Significant at the 5 and 1 percent levels, respectively.

#### 4. Conclusion

The newly evolved genotypes indicated some genetic improvement as they possess tolerance to water stress conditions and could produce high grain yield with less availability of water. Some cultivars have potential to produce better yield with less irrigation. This information will be helpful for wheat breeders in improving drought tolerance. The selected material will be utilised in hybridization programme to create new genetic variability. Also, based on this concept which, whenever in terms of the MP, STI and GMP indices is superior, in both non-stress and stress treatments has higher grain yield, on this basis Nosrat, Karoun and Sararud cultivars is probably the best and its cultivation by farming in these situation with possibility of occurrence post anthesis water deficiency stress in addition to producing a higher grain yield than other cultivars also associated with a lower risk.

#### 5. Acknowledgments

The authors would like to thank their colleagues in Agricultural and Natural Resource, University of Razi, Kermanshah, Iran.

#### 6. References

- 1. Abdoli M, Saeidi M: Using different indices for selection of resistant w heat cultivars to post anthesis water deficit in the west of Iran. *Annals* of Biological Research 2012, 3: 1322-1333.
- 2. Anjum SA, Wang LC, Farooq M, Hussain M, Xue LL, Zou CM: Brassinolide application improves the drought tolerance in mai ze through modulation of enzymatic antioxidants and leaf gas exchange. Journal of Agronomy and Cro p Science 2011, 197(3): 177-185.
- 3. Baque MDA, Karim MDA, Hamid A, Tetsush H: Effects of fertilizer potassium on gr owth, yield and nutrient uptake of wheat (*Triticum aestivum*) under water stress conditions. South Pacific Stud 2006, 27: 25-35.
- Bidinger FR, Mahalakshmi V, Rao GDP: Assessment of drought resistance in millet Factors effecting yields under stress. Australian Journal of Agriculture Research 1978, 38: 37-48.
- 5. Blum A: **Plant breeding for stress environments.** CRC Press, Florida 1988, 212 pp.
- Blum A, Pnuel Y: Physiological attributes associated with drought resistanc e on wheat cultivars in a Medite rranean environment. *Australian Journal of Agriculture Res earch* 1990, 41: 799-810.
- 7. Bouslama M, Schapaugh WT: Stress tolerance in soybean. Part 1. Evaluation of three screening techniques for heat and drought tolerance. *Crop Science* 1984, 24: 933-937.
- 8. Bray EA: Molecular response to wa ter deficit. *Plant Physiology* 1993, 1035-1040.
- Clarke JM, De-Pauw RM, Townley-Smith TM: Evaluation of methods for quantification of drought tolerance in wh eat. Crop Science 1992, 32: 728-732.
- Dencic S, Kastori R, Kobiljski B, Duggan B: Evaluation of grain yield and its co mponents in wheat cultivars and landraces under near optimal and drought conditions. *Euphytica* 2000, 113: 43-52.
- 11. Edward D, Wright D: The effects of winter water-logging and summ er drought on the growth and yield of winter wheat (*Triticum*

*aestivum* L.). *European Journal of Agronomy* 2008, **28**: 234-244.

- 12. Ehdaie B, Alloush GA, Madore MA, Waines JG: Genotypic variation for ste m reserves and mobilization in wheat: I I. Postanthesis changes in internode water-soluble carbohydrate. *Crop Science* 2006 b, 46: 2093-2103.
- 13. F.A.O: **Stattistical database.** Available online: Http:// www. FAO. Org. 2004.
- 14. Farshadfar E, Sutka J: Screening drought tolerance criteria in maiz e. Acta Agronomica Hungarica 2002, 50(4): 411-416.
- 15. Farshadfar E, Jamshidi B, Aghaee M: **Biplot** analysis of drought tolerance indicators in bread wheat lanraces of Iran. International Journal of Agriculture and Crop Sciences 2012, 4(5): 226-233.
- 16. Farshadfar E, Zamani M, Matlabi M, Emam-Jome E: Selection for drought resistance in chickpea lines. International Journal of Agric ulture and Crop Sciences 2001, 32(1): 65-77.
- 17. Fernandez GCJ: Effective selection criteria for assessing stress tolerance. In: Proceedings of the international symposium on ad aptation of vegetables and other food Crops in t emperature and water stress. (Eds): Kuo, C.G. Public Tainan Taiwan 1992, 257-270.
- Fischer RA, Maurer R: Drought resistance in spring wheat cultivars: I. Grain yield responses. Australian Journal of Agriculture Res earch 1978, 29: 897-912.
- 19. Fischer RA, Wood JT: Drought resistance in spring wheat cultivars III Yield association with morpho-physiological traits. *Australian Journal of Agriculture Research* 1979, **30**: 1001-1020.
- 20. Gavuzzi P, Rizza F, Palumbo M, Campaline RG, Ricciardi GL, Borghi B: Evaluation of field and laboratory predictors of drought and heat t tolerance in winter cereals. Canadian Journal of Plant Science 1997, 77: 523-531.
- 21. Golabadi M, Arzani A, Maibody SAM: Assessment of drought tolerance in s egregating populations in durum wheat. African Journal of Agriculture Research 2006, 1: 162-171.
- 22. Gupta NK, Gupta S, Kumar A: Effect of water stress on p hysiological attributes and their relationship with growth and yield of wheat cultivars at different stages. Journal of Agronomy and Crop Science 2001, 186: 55-62.
- 23. Guttieri MJ, Stark JC, Brien KO, Souza E: Relative sensitivity of spring wheat grain yield

and quality parameters to moisture deficit. *Crop Science* 2001, **41:** 327-335.

- 24. Hall AE: Is dehydration tolerance relevant to genotypic differences in leaf senesc es and cop adaptation to dry env ironments?. In: *Plant responses to cellular dehydration during environmental stress.* (Eds.): Close, T.J. and Bray, E.A. 1993, 1-10 pp.
- 25. Kar G, Kumar A, Martha M: Water use efficiency and crop c oefficients of dry seaso n oil seed crops. Agricultural Water Management 2007, 87: 73-82.
- 26. Karim MA, Hamid A, Rahman S: Grain growth and yield performa nce of wheat under subtropical conditions: II. Effect of water stress at reproductive stage. Cereal Research Communications 2000, 28: 101-107.
- Kristin AS, Senra RR, Perez FI, Enriquez BC, Gallegos JAA, Vallego PR, Wassimi N, Kelley JD: Improving common bea n performance under drought stress. Crop Science 1997, 37: 43-50.
- 28. Lan J: Comparison of evaluating methods for agronomic drought resistance in crops. Acta Agriculture Bor-occid Sinic 1998, 7: 85-87.
- 29. Lin CS, Binns MR, Lefkovitch LP: Stability analysis: where do w e stand?. Crop Science 1986, 26: 894-900.
- Majidi M, Tavakoli V, Mirlohi A, Sabzalian MR: Wild safflower species (*Carthamus oxyacanthus* Bieb.): A possible sourc e of drought tolerance for arid en vironments. *Australian Journal o f Crop Science* 2011, 5(8): 1055-1063.
- 31. Mitra J: Genetics and genetic improvement o f drought resistance in crop plants. Current Science 2001, 80: 758-762.
- 32. Mohammadi R, Armion M, Kahrizi D, Amri A: Efficiency of scre ening techniques for evaluating durum wheat genotypes under mild drought conditions. International Journal of Plant Production 2010, 4(1): 1735-8043.
- 33. Mollasadeghi V: Effect of potassium humate on yield and yield com ponents of wheat genotypes under end seasonal drought stress condition. Thesis of M.Sc in plant breeding. Islamic Azad University, Ardabil branch. Iran. 2010.
- 34. Moosavi SS, Yazdi-Samadi B, Naghavi MR, Zali AA, Dashti H, Pourshahbazi A: Introduction of

**new indices to ident ify relative drought tolerance and resistanc e in wheat genotypes.** *Desert* 2008, **12:** 165-178.

- 35. Moral GLF, Rharrabti Y, Villegas D, Royo C: Evaluation of grain yield and its components in durum wheat under mediterranean conditions: an ontogenic approach. Journal of Agronomy 2002, 95: 266-274.
- 36. Nasri M: Interaction of nutrient ele ments and drought stress in cultivars of Brassi ca napus. The second international conference on integrated approaches to sustai n and improve plant production under drought stress. Rome, Italy, September 24-28. 2005, 109 pp.
- 37. Noorka IR, Rehman SU, Haidry JR, Khaliq I, Tabassum S, Din GM: Effect of water stress on physico-chemical properties of wheat (*Triticum aestivum* L.). Pakistan Journal of Botany 2009, 41(6): 2917-2924.
- 38. Pireivatlou AS, Masjedlou BD, Aliyev RT: Evaluation of yield potential and stress adaptive trait in wheat genotype s under post anthesis drought stress conditions. African Journal of Agriculture Research 2010, 5: 2829-2836.
- 39. Plaut Z, Butow BJ, Blumenthal CS, Wrigley CW: Transport of dry m atter into developing wheat kernels. *Field Crops Research* 2004, **96:** 185-198.
- 40. Pourdad SS: **Study of drought resista nce indices in spring safflower.** *Acta Agronomica Hungarica* 2008, **56:** 203-212.
- 41. Ramirez P, Kelly JD: Traits related to drought resistance in common be an. *Euphytica* 1998, 99: 127-136.
- 42. Richards RA, Condon AG, Rebetzke GJ: **Traits to improve yield in dry environ ments.** In: *Application of Physiology in Wheat Breeding.* (Eds): Reynolds, M.P. Ortiz Monasterio, J.I. and McNab, A. Mexico, CIMMYT. 2001, 88-100 pp.
- Rosielle AA, Hamblin J: Theoretical aspects of selection for yield in stres s and non-stress environments. Crop Science 1981, 21(6): 943-946.
- 44. Talebi R, Fayaz F, Naji AM: Effective selection criteria for assessing drought stress tolerance in drum wheat (*Triticum durum* Desf.). *General* and Applied Plant Physiology 2009, **35**: 64-74.