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Abstract:  
Multixenobiotic resistance (MXR) in aquatic organisms exposed to natural toxins or anthropogenic 
contaminants is a phenomenon analogous to multidrug resistance (MDR) in mammalian tumor cell lines tolerant 
of anti-cancer drugs. Multidrug resistance is commonly due to the elevated expression of transmembrane P-gps 
which actively transport a wide variety of structurally and functionally diverse compounds. The effect of 
xenobiotic exposures on P-gp activity and protein titer has been examined in wild and captive populations of 
aquatic invertebrates and vertebrates. Molecular evolution of P-gp was investigated in teleost fishes, which 
exhibit remarkable diversity in morphology, behavior, and adaptations. Several phylogenetic analysis were 
performed using all teleosts P-gp amino acid and complementary DNA (cDNA) sequences present in GenBank. 
P-gp molecular evolution in teleosts seemed to follow identical evolution pathways to teleost fishes speciation. 
Keywords: MXR; phylogenetic analysis; molecular clock. 

1. Introduction 

Many aquatic species are able to survive in 
environments which contain high levels of multiple 
anthropogenic pollutants or natural product toxins. 
This MXR phenomenon is similar to MDR first 
observed in tumor cell lines resistant to anti-cancer 
drugs [1]. Overexpression of a 170 
kDatransmembrane P-gps was found to prevent the 
accumulation of cytotoxic drugs in resistant cells. 
MDR is of clinical importance because many human 
tumors have inherent or acquired P-gp-mediated 
drugresistance and do not respond to chemotherapy. 
P-gp is found endogenously in specialized epithelial 
tissues involved in secretion and excretion such as the 
mammalian gut, liver, and kidney, as well as on 
endothelial cells of capillary blood vessels at the 
blood-brain barrier. P-gp acts as an energy-dependent 
pump to translocate a wide variety of structurally and 
functionally diverse substrates. These compounds tend 
to be moderately hydrophobic, planar, natural 
products which are often substrates for or metabolites 
of detoxification enzymes such as cytochromes P450 
(CYPs) [1]. P-gps prevent the cellular accumulation of 
endogenous metabolites, phospholipids, and 
xenobiotics in exposed animals and cell cultures. P-
gp-like proteins have been described in a variety of 
aquatic organisms including sponges, mussels, 
oysters, clams, worms, and fish. As a specific 
transmembrane efflux transporter that pumps 
structurally different xenobiotics out of the cell, in 
Pgp (Abcb1) appeared to be the key mediator of the 
so-called MXR defence system [2,3] in aquatic 

organisms. It has been shown that the MXR 
phenomenon is constitutive to aquatic organisms, 
inducible in response to pollution [4-6], and sensitive 
to specific environmental pollutants/chemicals 
commonly called MXR inhibitors or chemosensitisers 
[7,8]. Both natural products and anthropogenic 
contaminants found in the aquatic environment appear 
to be substrates and inducers of the multixenobiotic 
resistance transporter in aquatic organisms. These 
observations suggest that in addition to normal cell 
function, P-gp activity may contribute to the relative 
hardiness of some aquatic species exposed to 
xenobiotics. In addition to well characterized 
detoxification systems (phase I, II, III enzymes, heat 
shock proteins, etc.), the induction of a 
multixenobiotic defense mechanism in organisms 
living in polluted environments may explain why 
contaminant spills cause more severe adverse effects 
at pristine sites than in already polluted areas [1]. P-
gp, member of the adenosine triphosphate (ATP)–
binding cassette (ABC) superfamily [9], has unusually 
broad poly-specificity, recognizing hundreds of 
compounds as small as 330 daltons up to 4000 daltons 
[10, 11]. Most P-gp substrates are hydrophobic and 
partition into the lipid bilayer [12, 13]. Thus, P-gp has 
been likened to a molecular “hydrophobic vacuum 
cleaner” [14], pulling substrates from the membrane 
and expelling them to promote MDR and MXR. The 
X-ray structure of apo P-gp at a resolution of 3.8 
Åwas recently obtained [15] (Figure 1). It revealed 
distinct drugbinding sites in the internal cavity 
capable of stereoselectivity, which is based on 
hydrophobic and aromatic interactions. Apo P-gp 
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structures have an inverted “V” shape, inward-facing 
conformation, for drug entry, whereas the outward-
facing conformation releases the substrate to the 
extracellular medium [15].  

Figure 1. Mouse P-gp 3dimensional 
structure (PDBID: 3G60). 

Expression of MXR proteins may be an 
ecotoxicologically important characteristic, as it could 
critically influence the susceptibility of aquatic 
organisms to pollutants [16, 17, 1]. The tissue 
distribution of P-gps is indicative of their function in 
accelerating excretion or preventing the uptake of 
xenobiotics. In addition to their occurrence in tumor 
cells [18, 19], expression of P-gps associated with an 
mdr1-like mechanism have been detected in normal 
teleost tissues that are involved in a secretory, 
absorption or barrier function such as the liver, 
kidneys, gills and intestine [20, 21, 22, 4]. 

Teleost fishes, with about 27 000 species [23], 
are the largest and most diverse group of vertebrates. 
Teleosts account for more than 99% of ray-finned 
fishes (Actinopterygians) which diverged from lobe-
finned fishes (Sarcopterygians) about 420 million 
years ago (Mya). They exhibit remarkable diversity in 
their morphology, behavior, and adaptations [24]. 
These evidences prompted me to investigate the 
molecular evolution of P-gp in such a high number of 
candidate species taxonomy group. For this purpose, 
several phylogenetic analysis were performed using 
teleost amino acid and cDNA sequences.  

2. Material and Methods 

P-gp amino acid and coding cDNA sequences of 
Oncorhynchusmykiss, Oreochromisniloticus, 
Xiphophorushellerii, Poeciliopsislucida, 
Trematomusbernacchii, Dicentrarchuslabrax, 
Pseudopleuronectesamericanus, Platichthysflesus, 
Carassiusgibelio, Poeciliopsislucida, Barbusbarbus, 
Cyprinuscarpio and Chondrostomanasus, were found 
in GenBank (www.ncbi.nlm.nih.gov/genbank/). All 
respective sequences were aligned using T-Coffee 
multiple sequence alignment software package [25]. 
jModelTest [26] was used to carry out statistical 
selection of best-fit models of nucleotide substitution 
to analyzed organisms P-gp molecular evolution. 
Analyses were performed using 88 candidate models 
and two types of information criterion (Akaike 
Information Criterion-AIC and Corrected Akaike 
Information Criterion-cAIC). For selection of the 
best-fit model of analyzed protein evolution was used 
ProtTest3 [27]. 122 candidate models and three types 
of criterion (Akaike Information Criterion-AIC, 
Corrected Akaike Information Criterion-cAIC and 
Bayesian Information Criterion-BIC) were used in 
these statistical analyses. The P-gpcDNA and amino 
acid sequences phylogenetic trees were build using 
the Bayesian inference (BI) method implemented in 
Mr. Bayes 3.2 [28]. Four independent runs, each one 
with four simultaneous Markov Chain Monte Carlo 
(MCMC) chains, were performed for 1,000,000 
generations sampled every 1000 generations. FigTree 
v1.3.1 software was used to display the annotated 
phylogenetic trees.  

3. Results and Discussion 

3.1. Molecular Clock Tests 

The molecular clock has become an 
indispensable tool within evolutionary biology, 
enabling independent timescales to be placed on 
evolutionary events. Despite these valuable 
contributions, date estimates derived from molecular 
data have not been without controversy. In particular, 
when molecular clocks have been employed to 
estimate the timing of recent events already 
tentatively dated on the basis of palaeontological, 
archaeological or biogeographic sources, conflicting 
dates are frequently obtained [29]. In its most extreme 
form, the molecular clock hypothesis postulates that 
homologous stretches of DNA evolve at essentially 
the same rate along all evolutionary lineages for as 
long as they maintain their original function. It was 
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shown that the substitution rate of mitochondrially 
encoded proteins has increased in the order of fishes, 
amphibians, birds, and mammals and that the rate in 
mammals is at least six times, probably an order of 
magnitude, higher than that in fishes. The higher 
evolutionary rate in birds and mammals than in 
amphibians and fishes was attributed to relaxation of 
selective constraints operating on proteins in warm-
blooded vertebrates and to high mutation rate of bird 
and mammalian mitochondrial DNAs [30]. Since the 
assumption of rate constancy is violated even within 
Mammalians, a truly universal molecular clock that 
applies to all organisms cannot be assumed to exist 
[31]. 

In order to know which was the best-fit model to 
analyzed P-gp protein sequence evolution a Bayes 
factor comparison (Mr. Bayes 3.2) was performed to 
test the strict clock model against the non-clock model 
using P-gp amino acid sequences. I used an accurate 
assessment of the marginal model likelihoods using 
the stepping-stone method. It estimates the model 
likelihood by sampling a series of distributions that 
represent different mixtures of the posterior 
distribution and the prior distribution [32]. The 
stepping-stone method was applied to the P-gp dataset 
using 510000 generations with a diagnostic frequency 
of 2500 in 2 independent runs for each of the tested 
models. The marginal likelihood values are shown in 
table 1. 

Table 1. The marginal likelihood values in each of the 2 independent runs and the resulting mean values for 
each of the tested models using the stepping-stone method. 

Run Unconstrained Strict Clock Relaxed Clock 
(CPP) 

Relaxed Clock 
(TK02) 

Relaxed Clock 
(IGR) 

1 -13819,83 -12878,03 -12858,76 -12872,65 -12863,56 
2 -13820,73 -12878,03 -12858,75 -12863,93 -12865,77 

Mean of Marginal 
Likelihood -13820,18 -12878,28 -12858,75 -12864,62 -12864,15 

The strict-clock model (-12878,28) is almost 942 
log likelihood units better than the non-clock model (-
13820,18). A difference exceeding 5 log likelihood 
units is usually considered very strong evidence in 
favor of the better model [33]. However, in 
phylogenetics the unrooted model of phylogeny and 
the strict molecular clock model are two extremes of a 
continuum. Despite their dominance in phylogenetic 
inference, it is evident that both are biologically 
unrealistic and that the real evolutionary process lies 
between these two extremes [34].  

Local molecular clocks are another alternative to 
the global molecular clock. A local molecular clock 
permits different regions in the tree to have different 
rates, but within each region the rate must be the same 
[35]. This new method conveniently allows a 
comparison of the strict molecular clock against a 
large array of alternative local molecular clock models 
[35]. As it is shown in table 1, CPP model (-12858,75) 
is 20 log likelihood units better than the strict-clock 
model (-12878,28) and nearly 6 log likelihood units 
better than the other two local molecular clocks, TK02 
(-12864,62) and IGR (-12864,15) model. Thus, the 
analyzed P-gp molecular evolution is based on a local 
molecular clock model (CPP). Phylogenetic analyses 
performed on Cu,Zn SOD amino acid sequences by 
Santovito [36] and colleagues showed an erratic  

 

differentiation of these proteins in 
antarcticteleosts and concurred with the theory of the 
“unclock-like” behaviourof Cu,Zn SOD evolution 
[37]. My empirical results demonstrated that Cu,Zn 
SOD evolution isn’t the only example of “unclock-
like” behavior, but P-gp evolution in the analyzed 
teleost fishes, seemed to behave “unclock-like”, too. I 
used the CPP molecular clock model in the 
phylogenetic tree. 

3.2. Phylogenetic Tree Constructions  

Recently, several isoforms of non-Pgp efflux 
transporters were discovered in various mammalian 
tissues, which implied that MXR in aquatic biota 
might also be a multi-transporter mechanism. Among 
non-Pgp ABC proteins, members of a multidrug 
resistance-associated protein (MRP) subfamily ABCC 
have been shown to be toxicologically relevant [38-
40]. Earlier studies [41-43] demonstrated the 
expression of MRP-related genes in a number of fish 
and invertebrate species [44-46]. Thus, it was 
indispensable to include in our analysis the complete 
amino acid and cDNA sequence of O. mykiss MRP2 
(gi 185134790). P-gp amino acid sequences of teleost 
fishes and mammals share a high degree of homology 
between them (76 % to 96 %) [47]. Full and/or partial 
P-gp and O. mykiss MRP2 amino acid sequences 
were aligned using T-Coffee in combined libraries of 
local and multiple alignments, which are known to 
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 americanus(Perciformesorder) P-gp was closer to P. 
flesus (Pleuronectifomes order) P-gp than to O. 
niloticus P-gp sequences (perciformescDNA 
sequences). The phylogenetic relationships of P. 
flesus and analyzed perciformes P-gps suggested that 
European flounder P-gp gene could have gone under 
convergent evolution. 

In order to know if the teleosts P-gp phylogeny 
(Figure 4) reflect the teleost phylogeny we compared 

the topology of the cDNA based phylogenetic tree 
with the topology of actinopterygian phylogenetic tree 
build by Near [48] and colleagues. From the 
comparison of the analyzed species P-gps with the 
actinopterygian time-calibrated phylogeny based on 
nine nuclear genes and 36 fossil age constraints [48], 
emerged a good correspondence between the 
phylogenies. In the actinopterygian phylogeny, 

 
Figure 3. Phylogenetic relationships among P-gp amino acid sequences using BI method (arithmetic mean = -
12793.698; harmonic mean = -20083.673). Posterior probability values higher than 50% are indicated on each 
node. The scale for branch length (0.04 substitution/site) is shown below the tree. 
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Figure 4. Phylogenetic relationships among P-gpcDNA sequences using BI method (arithmetic mean = - 
21757.714; harmonic mean = - 21777.237). Posterior probability values higher than 50% are indicated on each 
node. The scale for branch length (0.04 substitution/site) is shown below the tree. 

cypriniformes and salmoniformes were positioned 
close to each other and far from perciformes and other 
Acanthopterygii superorder members. Teleosts P-gp 
phylogeny (Figure 4) showed an identical topology to 
actinopterygian phylogeny except for P. flesus P-gp. 
Salmoniformes and cypriniformes P-gps were 
positioned closer to each other than to 
Acanthopterygii superorder members. The good 
correspondence between P-gp and teleosts phylogeny 
suggested that P-gp molecular evolution had followed 

the same evolution pathway as the speciation of the 
analyzed teleost species.  

4. Conclusions 

P. lucida and P. flesus P-gp genes could be good 
examples in teleosts demonstrating active process that 
included adjacent duplications, presumably by 
unequal crossovers; nonadjacent duplications believed 
to occur by chromosome or genome duplication; and 
the loss of genes through deletions and sequence
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 degeneration, observed in D. rerio ABC genes 
[46]. However, further analyses are needed to confirm 
previous hypothesis. Generally, P-gp molecular 
evolution in teleosts seemed to follow identical 
evolution pathways to teleost fishes speciation. Other 
teleosts P-gpcDNA and amino acid sequences would 
be extremely useful in P-gp molecular evolution 
studies. Evolution studies could give further helpful 
information for fish P-gp structural and functional 
studies. 
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